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Deutsche Kurzfassung (Extended Abstract in German)

Die vorliegende Dissertation beschreibt coalgebraische Mittel und Methoden zur Softwa-
respezifikation und –verifikation. Die Ergebnisse dieser Dissertation vereinfachen die An-
wendung coalgebraischer Spezifikations– und Verifikationstechniken und erweitern deren
Anwendbarkeit. Damit werden Softwareverifikation im Allgemeinen und im Besonderen
coalgebraische Methoden zur Softwareverifikation der praktischen Anwendbarkeit ein
Stück nähergebracht.

Diese Dissertation enthält zwei wesentliche Beiträge:

• Im Kapitel 3 wird eine Erweiterung des klassischen Begriffs der Coalgebra vor-
gestellt. Diese Erweiterung erlaubt die coalgebraische Modellierung von Klassen-
schnittstellen mit beliebigen Methodentypen (insbesondere mit binären Metho-
den).

• Im Kapitel 4 wird die coalgebraische Spezifikationssprache ccsl (Coalgebraic Class
Specification Language) vorgestellt. Die Bescheibung umfasst Syntax, Semantik
und einen Prototypcompiler, der ccsl Spezifikationen in Logik höherer Ordnung
(passend für die Theorembeweiser pvs und isabelle/hol) übersetzt.

Coalgebraische Methoden, so wie sie in dieser Dissertation beschrieben werden, haben
—oberflächlich betrachtet— eine gewisse Ähnlichkeit mit algebraischen Spezifikations–
und Verifikationsmethoden. In beiden Ansätzen werden die operationalen Schnittstel-
len mit Hilfe von Signaturen beschrieben. Mit Hilfe einer geeigneten Logik werden die
semantischen Eigenschaften der Schnittstelle erfasst.

Das Ziel der Forschung zu Coalgebren besteht nicht darin, algebraische Methoden
durch coalgebraische zu ersetzen, sondern vielmehr in der Integration beider Ansätze in
einer einheitlichen Umgebung. Eine solche Umgebung erlaubt die Vorteile sowohl des
algebraischen als auch des coalgebraischen Ansatzes zur Softwarespezifikation auszunut-
zen. Von einem Softwaresystem könnten dann zum Beispiel die dynamischen Aspekte
mit coalgebraischen Methoden beschrieben werden, während die (statischen) Daten, die
im System ausgetauscht werden, mit algebraischen Techniken modelliert werden.

Die Spezifikationssprache ccsl (zusammen mit einem der Theorembeweiser pvs oder
isabelle/hol) bietet eine solche Integration algebraischer und coalgebraischer Werk-
zeuge. In ccsl können einerseits abstrakte Datentypen mit initialer Semantik definiert
werden. Andererseits stellt ccsl Klassenspezifikationen mit coalgebraischen Signaturen
und einer speziellen coalgebraischen Logik bereit.

xi



Deutsche Kurzfassung (Extended Abstract in German)

Algebren und Coalgebren: Eine kurze Einführung

Bevor ich mit der Beschreibung der konkreten Ergebnisse der vorliegenden Dissertation
fortfahre, möchte ich zunächst die wesentlichen Schlagwörter erläutern. Eine Algebra ist
eine Funktion mit einem strukturierten Definitionsbereich, wie zum Beispiel

cons : A× List[A] // List[A]

Eine algebraische Signatur besteht aus einer endlichen Menge von Algebradeklarationen.
Eine algebraische Spezifikation bereichert eine algebraische Signatur um eine Menge von
Axiomen, die zusätzliche Eigenschaften der algebraischen Signatur formalisieren. Ein
Modell einer algebraischen Spezifikation besteht aus einer Menge von Funktionen —den
Interpretationen der algebraischen Signatur— die die Axiome erfüllen. Das Forschungs-
gebiet Algebraische Spezifikation stellt sich zum Ziel (Teile von) Software mittels Alge-
bren zu beschreiben und deren Eigenschaften mit einer geeigneten Logik zu beweisen.
Endlich generierte Datenstrukturen, wie Listen oder binäre Bäume sowie Funktionen,
die solche Datenstrukturen verarbeiten, können mit Hilfe von algebraischer Spezifikation
sehr elegant beschrieben werden. Die Modellierung findet dabei auf abstraktem Niveau,
ohne Bezug auf eine konkrete Implementierung, statt.

Unter Verifikation versteht man die Entwicklung von mathematischen Beweisen, die
zeigen, dass sich die modellierte Software so verhält, wie spezifiziert. Eine Verifikati-
on kann verschiedene Dinge umfassen, wie zum Beispiel das Ableiten von Eigenschaften
aus den Axiomen einer Spezifikation oder die Konstruktion von Modellen sowie die Kon-
struktion von Verfeinerungen einzelner Modelle. Die einzelnen Schritte einer Verifikation
sind vom mathematischen Standpunkt aus gesehen oft sehr einfach. Eine Verifikation im
Ganzen ist hingegen oft unerwartet komplex, auf Grund der großen Menge von Einzel-
schritten und Fallunterscheidungen. Realistische Verifikationsbeispiele erfordern deshalb
die Benutzung von Theorembeweisern. Ein Theorembeweiser ist ein Softwarewerkzeug,
das eine Logik zusammen mit einem Ableitungssystem implementiert. Der Theorem-
beweiser kann zum Finden und Überprüfen von Beweisen eingesetzt werden. Während
der Verifikation kann dem Theorembeweiser der stupide Teil der Arbeit übertragen wer-
den (zum Beispiel das Überprüfen von Fallunterscheidungen auf Vollständigkeit oder
das Ausführen von Berechnungen). Die Person, die die Verifikation ausführt, kann sich
dann auf die interessanten und schwierigen Aspekte der Verifikation konzentrieren. In
der vorliegenden Dissertation betrachte ich die Theorembeweiser pvs (Owre et al., 1996)
und isabelle/hol (Nipkow et al., 2002b; Nipkow et al., 2002a). Beide Systeme sind
interaktive Theorembeweiser für Logik höherer Stufe.

Eine Coalgebra ist eine Funktion mit strukturiertem Wertebereich, wie zum Beispiel1

step : Aut[A,B] // A⇒ (Aut[A,B]×B)

1Im Folgenden bezeichnet A ⇒ (Aut[A,B] × B) die Menge der Funktionen A //Aut[A,B]×B , die
häufig auch als (Aut[A,B]×B)A dargestellt wird.

xii



oder dazu äquivalent2

step′ : Aut[A,B]× A // Aut[A,B]×B

Betrachten Sie jetzt Aut[A,B] als die Menge der (nicht notwendigerweiser endlichen)
Automaten mit Eingabealphabet A und Ausgabealphabet B. Dann ist step (beziehungs-
weise step′) die Zustandsüberführungsfunktion, die einen Zustand eines Automaten zu-
sammen mit einer Eingabe auf einen Nachfolgezustand und eine Ausgabe abbildet. Im
Zusammenhang mit Coalgebren wird die Menge Aut[A,B] als der Zustandsraum der
Coalgebra step bezeichnet. Die Elemente des Zustandsraumes werden als black box be-
trachtet, deren interner Zustand nicht sichtbar ist. Die Coalgebra step bietet somit die
einzige Möglichkeit, einzelne Zustände zu untersuchen. Die einmalige Anwendung der
Coalgebra für eine spezifische Eingabe aus A liefert eine sichtbare Ausgabe in B und
einen Nachfolgezustand mit dem das Experiment bis ins Unendliche forgesetzt werden
kann.

Die Menge aller sichtbaren Ausgaben, die man für einen Zustand x ∈ Aut[A,B]
durch beliebig langes Anwenden der Coalgebra mit allen möglichen Eingaben erhält,
ist das sichtbare Verhalten von x. Es ist insbesondere möglich, dass zwei verschiedene
Zustände das gleiche sichtbare Verhalten zeigen. In diesem Fall sind die zwei Zustände
verhaltensäquivalent. Der Begriff der Bisimulation formalisiert das intuitive Konzept der
Verhaltensgleichheit. Eine Bisimulation ist eine Relation auf dem Zustandsraum einer
Coalgebra, die Zustände mit gleichem sichtbaren Verhalten in Beziehung setzt. Deswei-
teren ist eine Bisimulation gegenüber der Bildung von Nachfolgezuständen abgeschlos-
sen. Im Anwendungsbereich von Coalgebren spielen Bisimulationen eine große Rolle,
da man im Wesentlichen an der Verhaltensgleichheit von Zuständen interessiert ist. Ob
zwei gegebene Zustände gleich sind, ist hingegen für gewöhnlich nicht von Interesse. Für
Coalgebren wird in der praktischen Arbeit deshalb Gleichheit häufig durch Bisimulation
(oder Bisimilarität) ersetzt.

Coalgebren können auf sehr einfache Weise Ausnahmebedingungen (exceptions) oder
partielles Verhalten modellieren. Betrachten Sie zum Beispiel die folgende Coalgebra:3

stepp : PAut[A,B] // A⇒ (PAut[A,B]×B + 1)

oder, äquivalenterweise,

step′p : PAut[A,B]× A // PAut[A,B]×B + 1

Elemente von PAut[A,B] sind (potentiell unendliche) partielle Automaten. Abhängig
vom Zustand kann für bestimmte Eingaben aus A die Zustandsüberführungsfunktion

2Die Menge der Funktionen X //Y ⇒ Z korrespondiert eineindeutig mit der Menge X × Y //Z .
3Die Operation + steht hier für die disjunkte Vereinigung und 1 = {∗} bezeichnet die einelementige

Menge.
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Deutsche Kurzfassung (Extended Abstract in German)

undefiniert sein. In diesem Fall liefert stepp den Wert ∗ ∈ 1 als Ergebnis. Dem allgemei-
nen Sprachgebrauch folgend würde man sagen, der Automat stürzt ab.

Eine Coalgebraische (Klassen–) Spezifikation besteht aus einer endlichen Menge von
Coalgebra Deklarationen —der coalgebraischen Signatur— und einer endlichen Menge
von Axiomen. Auf die Logik, die zur Formulierung der Axiome genutzt wird, gehe ich
im Folgenden noch genauer ein (die präzise Beschreibung ist in Kapitel 4). Axiome in
coalgebraischen Spezifikationen schränken typischerweise das Verhalten der Coalgebren
ein. Zum Beispiel:4

∀x ∈ PAut[A,B] . stepp x a0 6= ∗

Dieses Axiom beschreibt, dass es keinen partiellen Automaten gibt, der bei Eingabe von
a0 abstürzt. Axiome fordern oft auch die Verhaltensäquivalenz bestimmter Zustände.
Das folgende Axiom beschreibt, dass das Verhalten aller Automaten zyklisch ist.

∀x ∈ Aut[A,B] . ∀a0, a1 ∈ A . x ↔ π1

(
step (π1 (step x a0)) a1

)
(Hier bezeichnet π1 : Aut[A,B]×B //Aut[A,B] die erste Projektion und das Symbol
↔ steht für die größte Bisimulation.)

Neben Bisimulationen spielen Coalgebramorphismen und Invarianten eine wichtige
Rolle für Coalgebren. Ein Coalgebramorphismus ist eine strukturerhaltende Abbildung
zwischen Coalgebren. Eine Invariante ist eine Eigenschaft (eines Zustandes einer Coalge-
bra), die, falls sie einmal gilt, für alle direkt und indirekt erreichbaren Nachfolgezustände
gültig bleibt. Invarianten spielen eine wichtige Rolle bei der Definition von coalgebrai-
schen Logiken und bei der Konstruktion von Verfeinerungen für coalgebraische Spezi-
fikationen (eine ausführliche Darstellung coalgebrischer Verfeinerung ist in (Jacobs and
Tews, 2001)).

Die meisten Autoren definieren sowohl den Begriff der Bisimulation als auch den der
Invariante mit Hilfe von Coalgebramorphismen. Die Definition von Coalgebramorphis-
men beruht auf der Struktur der Signatur.

Mittel und Methoden

Die vorliegende Dissertation untersucht Fragestellungen, die sich aus dem Ansatz erge-
ben, Software mit Hilfe von Algebren und Coalgebren zu modellieren. Im Konkreten liegt
Software als ein Algorithmus vor, der in einer bestimmten Programmiersprache verfasst
wurde. Ein allgemeines Problem hierbei ist, dass sich Programmiersprachen oft sehr stark
von der in der Mathematik verwendeten Mengenlehre unterscheiden. Die Unterschiede
betreffen sowohl die Konstruktionen, die in einer Programmiersprache beziehungsweise
in Mengenlehre möglich sind, als auch die Eigenschaften, die gelten. Man kann zum
Beispiel für zwei Mengen A und B immer die Menge der Abbildungen A ⇒ B bilden.

4Wie in hol und in funkionalen Sprachen üblich, schreibe ich Funktionsapplikation ohne explizite
Klammern. Funktionsapplikation ist linksassoziativ, das heißt, es gilt stepp x a0 = (stepp(x))(a0).
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Die Bildung von Funktionstypen ist jedoch nur in bestimmten Programmiersprachen
möglich. Ein weiteres allgemeines Problem ist, dass Programmiersprachen untereinan-
der oft sehr unterschiedlich sind.

Aus den genannten Gründen ist es sinnvoll, nicht mit Mengenlehre zu arbeiten, son-
dern mit einem abstrakterem Formalismus, der eine bessere Kontrolle über die zur
Verfügung stehenden Konstruktionen und die geltenden Eigenschaften erlaubt. Einen
solchen Formalismus bietet die Kategorientheorie (Mac Lane, 1997). Eine Kategorie kann
man als Abstraktion eines Universums von Mengen auffassen. Eine Kategorie enthält
Objekte (als Abstraktion von Mengen) und Morphismen (als Abstraktion von Funktio-
nen). Im Allgemeinen enthält eine Kategorie nur wenig Struktur und besitzt nur ein-
fachste Eigenschaften. Um zum Beispiel mit geordneten Paaren arbeiten zu können, ist
es notwendig, die Existenz von kategorientheoretischen Produkten vorauszusetzen. Auf
diese Weise ist es möglich, eine Kategorie sehr genau (in Bezug auf Eigenschaften und
verfügbare Konstruktionen) an eine gegebene Programmiersprache anzupassen.

Auf dem Abstraktionsniveau von Kategorientheorie übernehmen Endofunktoren die
Rolle von Signaturen. (Ein Endofunktor ist eine strukturerhaltende Abbildung einer Ka-
tegorie auf sich selbst.) Eine Coalgebra in einer Kategorie C ist dann ein Morphismus
X //F (X) in C, wobei X —der Zustandsraum der Coalgebra— ein Objekt aus C ist.
Der Endofunktor F : C //C formalisiert dabei die coalgebraische Signatur. Eine Alge-
bra ist, analogerweise, ein Morphismus der Form F (X) //X . Die einfache Typstruktur
gängiger Programmiersprachen ermöglicht es, sich bei der Modellierung von Software auf
Signaturen mit einfacher Struktur einzuschränken. Als weitere Konsequenz ist es daher
ausreichend, nur eine stark eingeschränkte Klasse von Funktoren zu betrachten. Für vie-
le Anwendungen sind polynomiale Funktoren ausreichend. Die Klasse der polynomialen
Funktoren wird durch die folgende Grammatik generiert (siehe auch Abschnitt 2.6.1).

F (X) = A | X | F1(X)× F2(X) | F1(X) + F2(X) | A⇒ F1(X)

Hierbei steht A für eine beliebige Menge, × bezeichnet das (kartesische) Produkt, + das
Coprodukt (die disjunkte Vereinigung) und ⇒ den Exponenten (Funktionsraum).

Für die Logik, die zur Verifikation der Software benutzt wird, gilt ein ähnliches Argu-
ment in Bezug auf das Abstraktionsniveau. Die verschiedenen Theorembeweiser stellen
unterschiedliche Logiken mit unterschiedlichen Eigenschaften zur Verfügung. Es ist des-
halb sinnvoll, mit einer Abstraktion mathematischer Logik zu arbeiten. Die Theorie der
Fibrationen (Jacobs, 1999a; Phoa, 1992) stellt eine solche Abstraktion innerhalb von
Kategorientheorie zur Verfügung.

Aus den eben dargestellten Gründen beruhen die zentralen Kapitel der vorliegenden
Dissertation in nichttrivialer Weise auf der Kategorientheorie. Das Einführungskapitel,
Kapitel 2, enthält alle Definitionen und erklärt den über einfache Mengenlehre hinaus-
gehenden Teil der in dieser Dissertation verwendeten Notation. Im Einführungskapitel
werden in Abschnitt 2.4 zwei konkrete Fibrationen im Detail vorgestellt: Die Fibration
der (getypten) Prädikate sowie die der (getypten) Relationen. Beide Fibrationen sind
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essentiell für Kapitel 3. Die Abschnitte 2.5 und 2.6 enthalten eine kurze Einführung in
Algebren und Coalgebren. Der Abschnitt 2.6 über Coalgebren enthält eine Sammlung
bekannter Resultate für Coalgebren polynomialer Funktoren. Diese Resultatssammlung
spielt eine wichtige Rolle für Kapitel 3, in dem ich verschiedene Verallgemeinerungen
polynomialer Funktoren diskutiere.

Ergebnisse

Im Folgenden gehe ich auf einige Aspekte dieser Dissertation näher ein. Der erste Unter-
abschnitt behandelt die Ergebnisse die ich bei der Generalisierung polynomialer Funk-
toren erzielen konnte. Der folgende Unterabschnitt stellt die coalgebraische Spezifikati-
onssprache ccsl vor.

Binäre Methoden

Im Kapitel 3 beschäftige ich mich mit dem Problem wie Methoden beliebigen Types,
insbesondere binäre Methoden, mit Hilfe von Coalgebren modelliert werden können. Die
Begriffe Methode und binäre Methode stammen aus der objektorientierten Programmie-
rung. Im objektorientierten Ansatz wird Software mit Hilfe von Klassen modularisiert.
Eine Klasse repräsentiert eine Abstraktion bestimmter Daten zusammen mit typischen
Operationen. Diese Operationen werden Methoden genannt. Jede Methode gehört zu
einer Klasse. Die Laufzeitdatenstrukturen von Klassen sind Objekte. Berechnungen be-
stehen im Wesentlichen aus Methodenaufrufen, die typischerweise als o.f geschrieben
werden. Dabei ist o ein Objekt und f eine Methode aus der Klasse zu der o gehört.
Beim Aufruf der Methode f bekommt f ein zusätzliches (oft implizites) Argument, das
Objekt o. Eine Methode ist eine binäre Methode, wenn sie noch mindestens ein weiteres
Objekt der gleichen Klasse als Argument erhält. Auf die Datenfelder eines Objektes hat
man üblicherweise von außen keinen Zugriff. Es gibt nur die Möglichkeit Methoden auf-
zurufen. Damit können Implementierungsdetails versteckt werden. Aus diesem Grund
eignen sich Klassen gut zur Datenabstraktion.

Der Aspekt der Datenabstraktion und das Berechnungsmuster legen es nahe Coalge-
bren zur Modellierung von Klassen in objektorientierten Programmiersprachen zu ver-
wenden. Diese Idee geht auf (Reichel, 1995) zurück. Allerdings unterlag dieser Ansatz bis
jetzt einer erheblichen Beschränkung: Klassen, die binäre Methoden enthalten, können
nicht als Coalgebren (für Endofunktoren) modelliert werden.

Lassen Sie mich als Beispiel die Schnittstelle der zuvor eingeführten Automaten um
die Operation merge erweitern. Die Funktion merge soll aus zwei Automaten a und
b das Interleaving bilden: Der aus der Anwendung merge(a, b) resultierende Automat
benutzt abwechselnd a und b um die Ausgaben zu produzieren. Der Typ von merge ist
offensichtlich:

merge : Aut[A,B]× Aut[A,B] // Aut[A,B]
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Unter Ausnutzung der Tatsache, dass jede Funktion X × Y //Z auf eineindeutige Weise
einer Funktion X //Y ⇒ Z entspricht, kann der Typ von merge in coalgebraische Form
gebracht werden.

merge : Aut[A,B] // Aut[A,B] ⇒ Aut[A,B]

Hier sieht man deutlich, dass der Zustandsraum Aut[A,B] in einer contravarianten Posi-
tion (auf der linken Seite von ⇒) im Wertebereich von merge auftritt. Aus diesem Grund
kann die Signatur der Automaten zusammen mit der merge Operation nicht mit einem
polynomialen Funktor modelliert werden.5

In Kapitel 3 stelle ich eine Lösung für das eben beschriebene Problem mit binären
Methoden vor. Die Lösung basiert darauf, polynomiale Funktoren zu bivarianten Funk-
toren Setop × Set //Set zu generalisieren.6 Die allgemeinste Klasse solcher Funktoren,
die in dieser Arbeit untersucht wird, ist die Klasse der polynomialen Funktoren höherer
Ordnung (siehe Abschnitt 3.2). Polynomiale Funktoren höherer Ordnung werden durch
die folgende Grammatik generiert:

H(Y,X) = A | X | H1(Y,X)×H2(Y,X) |
H1(Y,X) +H2(Y,X) | H1(X,Y ) ⇒ H2(Y,X)

Durch den allgemeinen Exponenten können polynomiale Funktoren höherer Ordnung
Signaturen mit beliebigen Methodentypen, insbesondere auch mit binären Methoden,
modellieren. Im Folgenden werde ich den Begriff der Coalgebra entsprechend generali-
sieren und einige Ergebnisse aus Kapitel 3 vorstellen.

Definition 1 Sei H : Cop ×C //C ein polynomialer Funktor höherer Ordnung. Ei-
ne H–Coalgebra ist dann eine Funktion X //H(X,X). Ein H–Coalgebramorphismus
zwischen den Coalgebren c : X //H(X,X) und d : Y //H(Y, Y ) ist eine Funktion
f : X //Y für die das folgende Diagramm kommutiert:

X
c //

f

��

H(X,X)
H(X,f)

))SSSSSSSSSSSSSS

H(X, Y )

Y
d // H(Y, Y )

H(f,Y )

55kkkkkkkkkkkkkk

Diese Definition ist eine konservative Erweiterung des bekannten Begriffes der Co-
algebra: Betrachtet man einen polynomialen Funktor F als Funktor höherer Ordnung,

5Genauer gesagt, kann die coalgebraische Signatur von merge nur für die Kategorien mit einem Endo-
funktor modelliert werden, in denen jeder Morphismus umkehrbar ist.

6In dieser Kurzfassung beschränke ich mich auf die Kategorie der Mengen und totalen Funktionen.
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dann stimmt die Definition von F–Coalgebren nach Definition 1 mit dem bekannten Be-
griff der Coalgebra überein und das obige Fünfeck schrumpft zum bekannten Quadrat.

Die generalisierten Definitionen für Bisimulationen und Invarianten befinden sich im
Abschnitt 3.3 (Definition 3.3.3 auf Seite 85). Bei der Definition von Bisimulationen und
Invarianten folge ich dem Ansatz von (Hermida and Jacobs, 1998): Zuerst verallgemei-
nere ich in Definition 3.3.1 (auf Seite 83) das Liften von Predikaten und Relationen für
polynomiale Funktoren höherer Stufe. Mit Hilfe dieser Liftings werden dann Bisimula-
tionen und Invarianten definiert.

Der weit verbreitete und auf (Aczel and Mendler, 1989) zurückgehende Ansatz, Bi-
simulationen mit Hilfe von Coalgebramorphismen zu definieren, führt für polynomiale
Funktoren höherer Ordnung nicht zum Ziel. Der daraus resultierende Begriff der Bisi-
mulation wäre gegenüber dem Bilden von Nachfolgezuständen nicht abgeschlossen.

Es zeigt sich, dass mit der Generalisierung zu polynomialen Funktoren höherer Ord-
nung fast alle bekannten Eigenschaften von Coalgebren verlorengehen. Abschnitt 3.3
enthält nur drei positive Resultate (siehe auch Proposition 3.3.6).

Satz 2 Für eine Coalgebra eines polynomialen Funktors höherer Ordnung mit Zu-
standsraum X ist die Menge X eine Invariante und die Gleichheitsrelations auf X
eine Bisimulation. Desweiteren gilt: Falls R eine Bisimulation ist, dann ist auch
Rop = {(y, x) | xR y} eine Bisimulation.

Alle weiteren für Coalgebren polynomialer Funktoren bekannten Resultate gelten im
Allgemeinen nicht.

Beobachtung 3 Für Coalgebren polynomialer Funktoren höherer Ordnung gilt keiner
der folgenden Punkte.

1. Bisimulationen und Invarianten sind unter mengentheoretischer Vereinigung ab-
geschlossen.

2. Bisimulationen und Invarianten sind unter mengentheoretischem Durchschnitt ab-
geschlossen.

3. Die relationale Komposition von zwei Bisimulationen ist eine Bisimulation.

4. Der Graph eines Coalgebramorphismus ist eine Bisimulation.

5. Für einen Coalgebramorphismus f : X //Y ist das direkte Bild∐
f > = {f x | x ∈ X} eine Invariante.

6. Invarianten definieren Teilcoalgebren und umgekehrt.

7. Die Relation
∐

δ P = {(x, x) | x ∈ P} ist eine Bisimulation falls P eine Invariante
ist.
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8. Das Prädikat
∐

π1
R = {x | ∃y . xR y} ist eine Invariante falls R eine Bisimulation

ist.

9. Die Relation π1
∗ P ∧ R = {(x, y) | xR y ∧ x ∈ P} ist eine Bisimulation für alle

Invarianten P und Bisimulationen R.

10. Der Kern einen Coalgebramorphismus ist eine Bisimulation.

Die Gegenbeispiele, die Beobachtung 3 belegen, sind überraschend einfach struktu-
riert. In allen Fällen enthält der Zustandsraum der Coalgebren weniger als sechs Ele-
mente. Ein Teil der Gegenbeispiele ist in Kapitel 3 zu finden. Die Restlichen sind im pvs
Material zu dieser Dissertation enthalten, siehe Anhang A.

Mit Ausnahme von Punkt 1 basieren alle Gegenbeispiele auf dem Funktor T (Y,X) =
(X ⇒ Y ) ⇒ X (siehe Beispiel 3.3.8). Diese Beobachtung führt zur Definition von
weiteren Klassen von Funktoren.

Kartesische Funktoren:

K(X) = A | X | K1(X)×K2(X) | K1(X) +K2(X)

Erweitert Kartesische Funktoren:

GK(Y,X) = A | X | GK
1 (Y,X)×GK

2 (Y,X) |
GK

1 (Y,X) +GK
2 (Y,X) | K(Y ) ⇒ GK

1 (Y,X)

Erweitert Polynomiale Funktoren:

GF (Y,X) = A | X | GF
1 (Y,X)×GF

2 (Y,X) |
GF

1 (Y,X) +GF
2 (Y,X) | F (Y ) ⇒ GF

1 (Y,X)

Alle hier vorgestellten Funktorklassen unterscheiden sich jeweils nur in der Klausel
für den Exponenten. Die Klasse der kartesischen Funktoren dient nur der Definition von
erweitert kartesischen Funktoren. Erweitert kartesische Funktoren sind die polynomia-
len Funktoren höherer Ordnung, bei denen der Definitionsbereich in der Klausel für den
Exponenten mit einem kartesischen Funktor dargestellt werden kann. Bei erweitert poly-
nomiale Funktoren ist ein polynomialer Funktor in Definitionsbereich zulässig. Tabelle 1
zeigt die verschiedenen Funktorklassen mit Beispielen zur Ausdrucksstärke.

Die Beschränkung des Exponenten führt zu stärkeren strukturellen Eigenschaften.

Satz 4 Für Coalgebren erweitert polynomialer Funktoren gelten bis auf Punkt 1 alle in
Beobachtung 3 genannten Eigenschaften.
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Funktorklasse Eigenschaft Beispiel

kartesisch keine Argumente Self // · · ·

polynomial konstante Argumente Self × A // · · ·

erweitert
kartesisch

keine funktionalen
Argumente

Self × Self × Self // · · ·

Self × (Self + A) // · · ·

erweitert
polynomial

funktionale Argumente
mit konst. Def.-bereich

Self × (A⇒ Self) // · · ·

polynomial
höherer Stufe

beliebige Argumente
Self × (Self ⇒ A) // · · ·

Self × (Self ⇒ Self) // · · ·

Tabelle 1.: Klassen von Funktoren im Kapitel 3

Für erweitert polynomiale Funktoren lässt sich außerdem zeigen, dass das Lifting von
Prädikaten und das von Relationen gefasert ist, siehe Lemma 3.4.4 und 3.4.7. Deswei-
teren führen die beiden verschiedenen Ansätze zur Definition von Bisimulationen und
Invarianten nach (Hermida and Jacobs, 1998) und nach (Aczel and Mendler, 1989) zu
gleichen Resultaten (siehe Abschnitt 3.4.5).

Für Coalgebren erweitert polynomialer Funktoren verbleibt das Manko, dass sowohl
Bisimulationen als auch Invarianten bezüglich ihrer Vereinigung nicht abgeschlossen
sind. Die Situation lässt sich mit enger gefassten Definition zum Teil verbessern: In
Abschnitt 3.4.6 werden starke Invarianten definiert. Starke Invarianten bilden einen
vollständigen Verband bezüglich mengentheoretischer Vereinigung und mengentheore-
tischem Durchschnitt. In Abschnitt 3.4.7 zeige ich, dass die reflexiven Bisimulationen
einen (unvollständigen) Verband bilden. Das heißt, zu jeweils zwei reflexiven Bisimulati-
on gibt es eine (reflexive) Bisimulation, die größer ist als deren Vereinigung. Eine größte
Bisimulation existiert allerdings im Allgemeinen nicht, siehe Beispiel 3.5.10.

Mit der weiteren Einschränkung auf erweitert kartesische Funktoren lässt sich ein
Resultat von (Poll and Zwanenburg, 2001) übertragen und leicht generalisieren (siehe
auch Abschnitt 3.5).

Satz 5 Für Coalgebren erweitert kartesischer Funktoren bilden die Bisimulationsäquiva-
lenzen (das heißt, die Bisimulationen, die Äquivalenzrelationen sind) einen vollständigen
Verband. Insbesondere existiert eine größte Bisimulationsäquivalenz.
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Auf die Existenz finaler Coalgebren wird im Abschnitt 3.6 eingegangen. Sobald die
Signatur eine binäre Methode enthält, das heißt, sobald die Signatur nicht mehr einem
polynomialen Funktor entspricht, lässt sich mit Hilfe eines Diagonalisierungsargumentes
zeigen, dass eine finale Coalgebra nicht existieren kann. Allerdings kann es in einge-
schränkten Klassen von Coalgebren (die zum Beispiel der Semantik einer coalgebraischen
Spezifikation entsprechen) durchaus finale Coalgebren geben.

Zusammenfassend lässt sich sagen, dass Coalgebren erweitert polynomialer Funkto-
ren genügend strukturelle Eigenschaften besitzen, um als Semantik für Klassen objekt-
orientierter Sprachen zu dienen. Für die Modellierung vieler objektorientierter Sprachen
sind sogar erweitert kartesische Funktoren ausreichend.

Die Ergebnisse von Kapitel 3 wurden zum Teil schon in (Tews, 2000b; Tews, 2001)
sowie in (Tews, 2002b) veröffentlicht.

Die Coalgebraische Spezifikationssprache CCSL7

Sowohl Algebren als auch Coalgebren haben, wenn sie zur Modellierung von Softwa-
re verwendet werden, bestimmte Vor– und Nachteile. Coalgebren eignen sich gut zur
Darstellung möglicherweise nicht terminierender Systeme. Mit Algebren lassen sich end-
lich erzeugte Datentypen wie Listen oder Bäume elegant modellieren. Softwaresysteme
beinhalten im Allgemeinen sowohl Datentypen als auch Prozesse. Für eine Spezifikati-
onsumgebung ist es daher wünschenswert, eine Spezifikationssprache zur Verfügung zu
haben, die sowohl Algebren als auch Coalgebren unterstüzt. Es ist weiterhin von Vorteil,
wenn die Spezifikationsumgebung iterierte Spezifikationen zulässt. Iterierte Spezifikatio-
nen sind Spezifikationen, in denen eine (co–)algebraische Spezifikation auf einen zuvor
mittels algebraischer oder coalgebraischer Methoden definierten Typ Bezug nimmt. Ka-
pitel 4 stellt eine Spezifikationssprache vor, die die eben genannten Bedinungen erfüllt:
ccsl.

Für ccsl bestanden die folgenden Designziele:

• Die Unterstützung von parametrisierbaren Klassenspezifikationen auf der Basis
von Coalgebren.

• Die Unterstützung von algebraischen Spezifikationen abstrakter Datentypen auf
der Basis initialer Algebren.

• Die Einbindung einer bekannten Logik.

• Möglichst keine Beschränkung der Ausdrucks– und Modellierungsstärke.

• Die Unterstützung von Theorembeweisern.

Diese Designziele sind natürlich zum Teil umstritten. Das zweitletzte Ziel impliziert
zum Beispiel dass auch Signaturen, die zu Funktoren höherer Ordung korrespondie-
ren, in ccsl zulässig sind. Auf der einen Seite erfordert eine höhere Ausdrucksstärke

7ccsl ist ein Akronym für Coalgebraic Class Specification Language.
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der Spezifikationssprache eine größere Verantwortung der Benutzer. Der Benutzer8 muss
selbst darauf acht geben, Fehler, die durch die nicht gerechtfertigte Annahme vertrauter
Eigenschaften enstehen, auszuschließen. Auf der anderen Seite gibt eine höhere Aus-
drucksstärke dem Benutzer jedoch die Freiheit zugunsten flexiblerer Signaturen auf ver-
traute strukturelle Eigenschaften zu verzichten (oder umgekehrt). Insbesondere werden
damit Experimente mit Signaturen möglich, für die im Moment nur wenig allgemeine
theoretische Resultate zur Verfügung stehen. Die genannten Designziele werden in der
Einführung zu Kapitel 4 ausführlicher erläutert.

In der typischen Anwendung wird ccsl zusammen mit einen Theorembeweiser wie
folgt benutzt:

Eingaben
des Nutzers

��

coalgebraische
Spezifikation

+3 ccsl
Compiler

+3 Formalisierung
in HOL

+3 isabelle/hol
oder pvs

+3 q.e.d.

Modelle

KS

Spezifikationen in ccsl können mit Hilfe des ccsl Compilers in ihre Semantik in Logik
höherer Ordnung übersetzt werden. Der ccsl Compiler unterstützt die beiden Theorem-
beweiser pvs und isabelle/hol (in der Syntax von Isar). Damit ist es möglich, die
Eigenschaften einer ccsl Spezifikation in einem Theorembeweiser zu untersuchen. Der
Nutzer kann im Theorembeweiser auch Modelle der ccsl Spezifkation entwickeln oder
Verfeinerungen zwischen verschiedenen Spezifikationen konstruieren. Die starke Anbin-
dung an Theorembeweiser macht ccsl zu einem nützlichen Werkzeug, obwohl es selbst
noch Forschungsgegenstand ist. Die Spezifikationssprache ccsl wurde bereits in einer
Reihe von Fallstudien verwendet, siehe Abschnitt 4.10.

Der wissenschaftliche Beitrag von Kapitel 4 besteht in der umfassenden Beschreibung
der Spezifikationssprache ccsl, ihrer Syntax und ihrer Semantik in der Kategorie Set
der Mengen und totalen Funktionen. Die Typtheorie von ccsl ist eine spezialisierte
Version der polymorphen Typtheorie λ→ aus (Barendregt, 1992; Jacobs, 1999a). Die
Logik von ccsl ist eine Logik höherer Ordnung (Gordon and Melham, 1993) über dieser
Typtheorie, die um Verhaltensgleichheit und modale Operatoren erweitert wurde. Die
konkrete Syntax von ccsl ist stark an die Syntax von pvs angelehnt.

Spezifikationen in ccsl werden aus drei Bausteinen zusammengesetzt: Coalgebrai-
schen Klassenspezifikationen, algebraischen abstrakten Datentypen und Signaturerwei-
terungen. Klassenspezifikationen bestehen aus Methodendeklarationen, Konstruktorde-

8Ich weise darauf hin, dass, wann immer im Text von einem ”Benutzer“, ”Leser“ oder ähnlichem die
Rede ist, die Bezeichnung in der grammatisch maskulinen Form, dem allgemeinen Sprachgebrauch
folgend, der an dieser Stelle nicht zur Debatte stehen kann, geschlechtsneutral verwendet wird.
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klarationen und Axiomen, die das Verhalten von Methoden und Konstruktoren ein-
schränken. Die Methodendeklarationen werden zu einer coalgebrischen Signatur zusam-
mengefasst. Die zulässigen Signaturen entsprechen der Klasse der polynomialen Funk-
toren höherer Ordnung. Für abstrakte Datentypen gelten die üblichen Einschränkun-
gen (Gunter, 1992; Berghofer and Wenzel, 1999), die die Existenz initialer Modelle si-
chern. Mit Hilfe von Signaturerweiterungen können in ccsl Typkonstruktoren, Kon-
stanten und Funktionen deklariert werden, die im genutzten Theorembeweiser definiert
sind.

Abbildung 2 zeigt als Beispiel die Spezifikation von (coalgebraischen) Warteschlangen
in ccsl. Die ersten fünf Zeilen definieren den Typkonstruktor Lift.9 Der Typkonstruktor
Lift fügt zu seinem Argument ein zusätzliches Element bot hinzu und wird in ccsl zur
Modellierung partieller Funktionen und Methoden benutzt.

Die Klassenspezifikation Queue deklariert einen Typparameter A für die Elemente
der Warteschlange. Die Klassenspezifikation enthält zwei Methoden. Die Methode put
fügt ein neues Element in die Warteschlange ein. Die Methode top entfernt das erste
Element aus der Warteschlange und liefert als Ergebnis ein Paar, bestehend aus dem
eben entfernten ersten Element und dem Folgezustand der Warteschlage. Für leere War-
teschlagen schlägt top fehl und liefert bot als Ergebnis. Der Konstruktor new erlaubt es,
neue Warteschlangen zu erzeugen.

Das Schlüsselwort Assertion leitet in Zeile 13 die Methodenaxiome ein. Das erste
Axiom q empty spezifiziert das Verhalten von leeren Warteschlagen. ccsl gestattet ob-
jektorientierte Notation für Methodenaufrufe: x.top steht für die Anwendung der Me-
thode top auf die Warteschlagne x. Die Tilde ∼ bezeichnet Verhaltensgleichheit. Ihre
Anwendung in Zeile 15 bedeutet, dass die Methode top, angewendet auf das Ergebnis
von x.put(a), nicht fehlschlagen darf (das heißt, das Ergebis ist ungleich bot). Desweite-
ren muss das zurückgelieferte Paar das Element a enthalten und einen Zustand der zu x
bisimilar ist.

Das Axiom q filled legt das Verhalten für nichtleere Warteschlagen fest: Für nichtleere
Warteschlangen kann man die Operationen put und top vertauschen. Schließlich legt das
Konstruktoraxiom q new fest, dass neu erzeugte Warteschlangen leer sind.

Es ist zu beachten, dass die Spezifikation Queue Modelle, die Warteschlangen mit
unendlich vielen Elementen enthalten, nicht ausschließt.

Im letzten Teil der Spezifikation steht das Theorem strong reachable. Theoreme be-
einflussen die Semantik einer Klassenspezifikation nicht. Sie bieten aber eine bequeme
Möglichkeit Sätze in der Syntax von ccsl unabhängig vom verwendeten Theorembe-
weiser zu formulieren. Das Theorem strong reachable benutzt den modalen Operator
Eventually. Es besagt, dass für alle Warteschlangen p und q mit endlich vielen Elemen-
ten ein Nachfolgezustand r von p existiert, der zu q bisimilar ist.

Der zur Dissertation gehörende Quellcode enthält (unter anderem) die Spezifika-

9Der Datentyp Lift entstammt dem ccsl Standard Vorspann (siehe Abschnitt 4.9.8) und wurde nur
zur Information in Abbildung 2 eingefügt.
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Begin Lift[ X : Type ] : Adt
Constructor

bot : Carrier;
up( down ) : X −> Carrier

End Lift 5

Begin Queue[ A : Type ] : ClassSpec
Method

put : [Self, A] −> Self;
top : Self −> Lift[[A,Self]]; 10

Constructor
new : Self;

Assertion Selfvar x : Self
q empty : x.top ∼ bot Implies

Forall(a : A) . x.put(a).top ∼ up(a,x); 15

q filled : Forall(a1 : A, y : Self) . x.top ∼ up(a1, y) Implies
Forall(a2 : A) . x.put(a2).top ∼ up(a1, y.put(a2));

Creation
q new : new.top ∼ bot;

20

Theorem
Importing QueueModal[Self, A]

strong reachable : Forall(p, q : Self) :
Let finite? : [Self −> bool] = Lambda(q : Self) :

(Eventually Lambda(x : Self) : x.top = bot For {top}) q 25

IN
finite? p And finite? q Implies

(Eventually
(Eventually Lambda(r : Self) : r ∼ q For {put})

For {top} 30

) p;
End Queue

Abbildung 2.: Spezifikation einer Warteschlange in ccsl
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tion Queue, ein Modell der Spezifikation in pvs und einen Beweis für das Theorem
strong reachable.

Das Design von ccsl und die Implementierung des ccsl Compilers ist das Resultat einer
Gruppenarbeit im loop Projekt. (loop ist ein Akronym für Logic of Object-Oriented
Programming.10) Gegenstand des Projektes sind formale Methoden für objektorientier-
te Programmiersprachen. Das loop Projekt startete 1997 als gemeinsames Projekt an
der Katholieke Universiteit Nijmegen (Universität Nimwegen) und der Technischen Uni-
versität Dresden. Außer mir arbeiten oder arbeiteten die folgenden Personen im loop
Projekt: Joachim van den Berg, Ulrich Hensel, Jesse Hughes, Marieke Huisman, Bart Ja-
cobs, Erik Poll und Jan Rothe. Innerhalb des Projekts werden verschiedene Forschungs-
richtungen verfolgt. Die Gemeinsamkeit besteht in der Anwendung von Coalgebren als
semantische Grundlage für objektorientierte Programme und der intensiven Nutzung
von Theorembeweisern. Neben der Forschungsarbeit, die in der vorliegenden Disserta-
tion ihren Niederschlag findet, ist die Semantik der Programmiersprache Java und die
Verifikation von Java und Java Card Programmen Gegenstand der Forschung im loop
Projekt (siehe (Huisman, 2001)). Die Arbeiten zu ccsl gehen bis zu den Anfängen des
loop Projektes zurück. Alle Mitglieder im Projekt haben in der einen oder anderen
Weise, oft substantiell, zu ccsl beigetragen.

Ein wichtiges Anwendungsgebiet von ccsl ist die Konstruktion von Verfeinerungen.
Eine Verfeinerung setzt zwei Spezifikationen in Beziehung: Eine konkrete Spezifikation
C verfeinert eine abstrakte Spezifikation A, falls alle Modelle von C in Modelle von A
überführt werden können. Für die Anwendung von Softwareverifikation in der Praxis ist
der Begriff der Verfeinerung unverzichtbar.

In gemeinsamer Arbeit mit Bart Jacobs habe ich parallel zur Entwicklung von ccsl
auch eine Definition für coalgebraische Verfeinerung, das heißt, für Verfeinerung zwischen
coalgebraischen Spezifikationen, ausgearbeitet. Eine ausführliche Darstellung ist in (Ja-
cobs and Tews, 2001). In der vorliegenden Arbeit enthält Abschnitt 4.10.1 eine kurze
Beschreibung coalgebraischer Verfeinerung. In diesem Abschnitt wird auch gezeigt, wie
Verfeinerungen zwischen ccsl Spezifikationen bewiesen werden können.

Verifikation der Doktorarbeit

Eine Besonderheit der vorliegenden Arbeit ist ihre enge Beziehung zum Theorembewei-
ser pvs. Diese Arbeit beschreibt nicht nur Softwarewerkzeuge, die in Verbindung mit
pvs zur Softwareverifikation genutzt werden können. Auch die meisten theoretischen
Ergebnisse und fast alle Beispiele dieser Arbeit wurden mit pvs entwickelt, beziehungs-
weise überprüft. Dazu wurde ein Teil der in dieser Arbeit benutzten Kategorientheorie
in pvs formalisiert. Die dieser Formalisierung zugrunde liegenden Ideen werden im Ab-
schnitt 2.4.4 erläutert. Weitere Details und Ausschnitte aus dem pvs Quellcode enthält

10Im WWW ist das loop Projekt unter der URL http://www.cs.kun.nl/∼bart/LOOP/ zu finden.
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Anhang A.1. Propositionen und Lemmata, die eine direkte Entsprechung zu einem Theo-
rem in pvs haben (und somit in pvs bewiesen wurden), können in dieser Arbeit am Satz

”
This lemma/proposition has been proved in pvs.“ erkannt werden. Abschnitt A.2 des

Anhangs enthält eine Tabelle, die Propositionen, Lemmata und Beispiele in dieser Arbeit
mit dem pvs Quelltext in Beziehung setzt. Der pvs Quelltext ist im WWW verfügbar,
siehe Anhang A.

Während der gesamten Zeit, in der ich mich mit dieser Doktorarbeit beschäftigt habe,
erwies sich pvs als ausgezeichnetes Werkzeug um Beispiele zu entwickeln, Ideen zu prüfen
und natürlich um Lemmata zu beweisen. Allerdings gibt es auch eine zweite Seite von
pvs: Die riesige Anzahl an Fehlerberichten, die ich im Verlauf dieser Arbeit in der pvs
Fehlerdatenbank eingereicht habe, zeigen, dass pvs, als Softwaresystem betrachtet, noch
enorme Entwicklungsmöglichkeiten hat.

Verwandte Forschungsarbeiten

Die vorliegende Arbeit basiert auf älteren Arbeiten zum Thema Coalgebren und coalge-
braischer Spezifikation. Die wesentliche Motivation dieser Arbeit ist die Idee von (Rei-
chel, 1995), Coalgebren als Grundlage der Semantik objektorientierter Sprachen zu ver-
wenden. Diese Idee wird in mehreren Arbeiten (Jacobs, 1995; Jacobs, 1996a; Jacobs,
1996b; Jacobs, 1997a; Jacobs, 1997b) von Jacobs weitergeführt. Die Beziehung zwi-
schen algebraischen und coalgebraischen Spezifikationen wird in (Hensel and Jacobs,
1997; Hensel, 1999; Rößiger, 2000a; Rößiger, 2000b) untersucht. Hensel und Jacobs ent-
wickeln in diesen Arbeiten hinreichende Kriterien für die Gültigkeit von Induktions–
und Coinduktionsprinzipien. Rößiger beweist die Existenz von initialen Algebren und
finalen Coalgebren in der Kategorie der Mengen für alle kovarianten Datenfunktoren.
Beide Ergebnisse bilden das Fundament der Semantik von ccsl.

Coalgebren sind gegenwärtig ein aktives Forschungsgebiet, siehe (Jacobs et al., 1998b;
Jacobs and Rutten, 1999; Reichel, 2000; Corradini et al., 2001). Das Problem der Be-
handlung binärer Methoden ist schon längere Zeit bekannt, eine allgemeine Lösung exi-
stierte jedoch nicht. Jacobs erläutert in (Jacobs, 1996a) wie man das Problem umgehen
kann indem man die binären Methoden als definitorische Erweiterungen behandelt. Eine
weitere (Teil–) Lösung schlagen Hennicker und Kurz in (Hennicker and Kurz, 1999) vor:
Unter gewissen Voraussetzungen können binäre Methoden mit einem Wertebereich von
Self als algebraische Erweiterungen coalgebraischer Spezifikationen formalisiert werden.

Die Wurzeln der Spezifikationssprache ccsl reichen bis zu den ersten, oben zitier-
ten Arbeiten von Jacobs zurück. In diesen Arbeiten betrachtet Jacobs coalgebraische
Signaturen als spezielle polymorphe Signaturen. Der einfachste Weg eine coalgebraische
Logik11 zu erhalten, ist demzufolge, eine bekannte Logik (zum Beispiel Gleichungslo-

11In dieser Arbeit verwende ich die Phrase ”coalgebraische Logik“ für alle Logiken, die man mit coal-
gebraischen Signaturen einsetzen kann. Die in (Moss, 1999) beschriebene coalgebraic logic ist somit
eine spezielle coalgebraische Logik.
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gik) für polymorphe Signaturen zu verwenden. Dieser Ansatz wurde auch im Design
von ccsl verfolgt. Goldblatt beschreibt in (Goldblatt, 2001a; Goldblatt, 2001b) das
Fragment erster Stufe der Logik von ccsl. In dieser Arbeit entwickelt Goldblatt auch
ein Birkhoff–artiges Theorem. Die modalen Operatoren mit Methodengranularität von
ccsl stammen aus (Rothe, 2000). Die allgemeinere Version mit Pfadgranularität wird
in (Jacobs, 1999b) entwickelt.

Die Spezifikationsprache ccsl ist sehr eng mit der Programmiersprache Chari-
ty (Cockett and Fukushima, 1992; Schroeder, 1997) verwandt. In Charity kann man
nur mit Hilfe von initialen Algebren oder finalen Coalgebren programmieren. Die These,
dass ccsl die perfekte Spezifikationssprache für Charity Programme sei, ist also durchaus
gerechtfertigt.

In der Forschung zum Thema Coalgebren wurden schon viele Ansätze für eine coalge-
braische Logik vorgestellt. Einige Autoren verfolgen die Idee, dass eine Logik für Coal-
gebren (also dualisierten Algebren) auf dualisierten Gleichungen beruhen muss. Sol-
che Cogleichungen werden zum Beispiel in (Ĉırstea, 1999) vorgestellt. In dieser Arbeit
entwickelt Ĉırstea einen korrekten und vollständigen Deduktionskalkül für eine einge-
schränkte Menge coalgebraischer Signaturen. Binäre Methoden sind in den Signatu-
ren von Ĉırstea nicht zugelassen. In der vorliegenden Arbeit wird dem Problem der
Vollständigkeit (des Deduktionskalküls) keine große Wertigkeit eingeräumt. Ich erachte
eine ausreichende Ausdrucksstärke, die es gestattet, echte Anwendungsfälle bequem zu
behandeln, für wesentlich wichtiger.

Eine Reihe von Arbeiten analysiert das Verhältnis von Coalgebren und modaler Lo-
gik, zum Beispiel (Moss, 1999; Rößiger, 2000a; Kurz, 2000; Hughes, 2001). Diese ge-
nannten Arbeiten beschreiben unterschiedliche modale Logiken. Moss entwickelt cha-
rakterisierende Formeln, das heißt Formeln, mit denen Zustände eindeutig bis auf Ver-
haltensgleichheit beschrieben werden können. Rößiger erhält einen vollständigen Deduk-
tionskalkül für seine Logik und konstruiert mit Hilfe der Logik finale Coalgebren. Kurz
und Hughes benutzen modale Logik in ihren Arbeiten nach der Suche eines Birkhoff–
artigen Satzes. Die Entwicklung all dieser verschiedenen modalen Logiken wurde immer
von theoretischen Fragestellungen begleitet und beeinflußt. Als Ergebis dessen sind die-
se Logiken zur Spezifikation von Systemen relativ ungeeignet. In der Logik Rößigers
benötigt man zum Beispiel für die einfache Aussage, dass eine Warteschlange nur end-
lich viele Elemente enthält, eine unendliche Menge von modalen Formeln. Aus diesem
Grund spielten die eben diskutierten modalen Logiken bei der Gestaltung der Logik von
ccsl nur eine geringe Rolle.

Verborgene Universelle Algebra oder Universelle Algebra mit verborgenen Sorten
(englisch hidden algebra) (Roşu, 2000; Goguen and Malcolm, 2000) ist ein Zweig mehr-
sortiger Universeller Algebra, in dem einige Sorten als verboren oder versteckt betrachtet
werden. Auf verborgenen Sorten gibt es keinen direkten Zugriff. Sie sind dafür gedacht,
den Zustansraum von Automaten oder Klassen zu modellieren. Eine erhebliche Ein-
schränkung in der Arbeit mit verborgenen Algebren besteht darin, dass Signaturen nur
algebraische Operationen der Form S1 × · · · × Sn

//S0 enhalten können, wobei alle Si
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Sorten bezeichnen. Das heißt, es gibt weder strukturierte Argumente noch strukturier-
te Ergebnistypen. Mit Coalgebren kann Partialität sehr einfach mit Operationen der
Form Self //Self + 1 modelliert werden. Im Gebiet verborgener Algebren ist es hierfür
notwendig, Teilsorten zu verwenden.

Ein weiterer Unterschied im Vergleich mit verborgenen Algebren ist der unterschiedli-
che Ansatz Verhaltensgleichheit zu beschreiben. Für coalgebraische Spezifikationen ver-
wendet man Bisimulationen, ein Begriff, mit dem man auch die Verhaltensgleichheit
von Zuständen verschiedener Coalgebren untersuchen kann. Im Gebiet der verborgenen
Algebren wird der Ansatz der sichtbaren Kontexte von (Reichel, 1985) verwendet, um
sogenannte verborgene Kongruenzen (englisch hidden congruence) zu definieren. Sobald
binäre Methoden eine Rolle spielen, kann man mit verborgenen Kongruenzen nur noch
Zustände eines Modells behandeln.

Abschließend möchte ich noch drei andere Systeme zur Softwarespezifikation be-
trachten. Die Arbeit (Kellomäki, 1997) beschreibt die Spezifiktionssprache DisCo für
reaktive Systeme. DisCo basiert auf der temporalen Logik von Aktionen (TLA) von
Lamport (Lamport, 1994). In DisCo beschreibt man Klassen nur durch ihre Datenfel-
der. Außerhalb der Klassen werden die möglichen Aktionen, die im System auftreten
können, zusammen mit den Zustandsänderungen beschrieben.

Die Initiative cofi (common framework initiative) (Mosses, 1997) entwickelt die Spe-
zifikationssprache casl (Common Algebraic Specification Language12). Für casl sind
eine Reihe von Fragmenten definiert, die den verschiedenen Logiken entsprechen, die
im Gebiet der algebraischen Spezifikation benutzt wurden. In casl gibt es jedoch keine
Möglichkeit, Verhalten oder Prozesstypen zu beschreiben.

Die Modellierungssprache UML (Fowler, 1999; OMG, 2001) zielt zusammen mit der
speziellen Logik OCL (Warmer and Kleppe, 1999; OMG, 1997) genau wie ccsl auf
die Beschreibung objektorientierter Software. Während ccsl jedoch eine Spezifikations-
sprache ist, handelt es sich bei UML/OCL hauptsächlich um ein Entwurfswerkzeug. Ein
Vergleich zwischen ccsl und UML/OCL ist gegenwärtig nicht möglich, da am UML
Standard noch intensiv gearbeitet wird (Kobryn, 1999) und der gegenwärtige Stan-
dard zur Semantik von UML/OCL nur sehr wage Aussagen macht. Die beispielhafte
Übertragung eines UML/OCL Beispieles in Abschnitt 4.10.3 unterstützt die These, dass
die meisten Konstrukte von UML Klassendiagrammen sowie von OCL problemlos in
ccsl modelliert werden können. Eine Einbettung von ccsl in den formalen Teil von
UML/OCL ist jedoch unmöglich. Das liegt zum einen an der Ausdrucksstärke von OCL
(die der von Aussagenlogik entspricht). Zum anderen lässt UML nur die Spezifikation
von Klassen zu. Es gibt keine Unterstützung für algebraische Datentypen.

12Nicht zu verwechseln mit der custom attack simulation language (casl) (Vigna et al., 2000; Secure
Networks, 1998).
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1. Introduction

This thesis is about coalgebraic methods in software specification and verification. It
extends known techniques of coalgebraic specification to a more general level to pave
the way for real world applications of software verification.

There are two main contributions of the present thesis:

• Chapter 3 proposes a generalisation of the familiar notion of coalgebra such that
classes containing methods with arbitrary types (including binary methods) can
be modelled with these generalised coalgebras.

• Chapter 4 presents the specification language ccsl (short for Coalgebraic Class
Specification Language), its syntax, its semantics, and a prototype compiler that
translates ccsl into higher-order logic.

In flavour coalgebraic specification as presented in this thesis is very similar to al-
gebraic specification. It builds on signatures consisting of coalgebraic operations and
uses (a variant of) equational logic to restrict the class of models. However, coalgebraic
specification is not to replace algebraic specification. The aim is rather to combine both
algebraic and coalgebraic specification techniques in one specification environment to
allow the user to specify parts of his system algebraically while other parts are modelled
coalgebraically. The specification language ccsl in combination with the ccsl compiler
and one of the theorem provers isabelle/hol or pvs provides such an environment.
Through the combination of the advantages of algebraic and coalgebraic techniques the
complexity of the overall specification can be drastically reduced. This makes the appli-
cation of formal methods cheaper or moves systems into the scope of formal methods
that are too complex for traditional methods of software verification.

Let me explain some of the buzzwords before I continue with a more detailed introduction
into this thesis. An algebra is a function with a structured domain like

cons : A× List[A] // List[A]

An algebraic signature is a finite set of such algebra declarations. An algebraic specifica-
tion consists of an algebraic signature and a set of axioms. A model of such a specification
is a set of functions that fulfils the axioms. In algebraic specification one models pieces of
software as algebras and describes (and proves) their properties within a logical frame-
work. With algebraic specification one can very nicely describe the properties of finitely
generated data structures (like lists or binary trees) and functions (i.e., programs) that
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1. Introduction

manipulate these data. Thereby the description of the data structures takes place at an
abstract level, without referring to a concrete implementation.

Verification means the development of formal proofs that show that the modelled
software behaves as intended. This may involve the derivation of properties from the
axioms of a specification, the proof of refinement relations between different specifica-
tions, and the construction of models. The mathematics that is involved in software
verification if often rather simple. However, a complete verification requires many case
distinctions and a huge amount of simple reasoning and computation. Therefore non-
trivial verification examples require the use of theorem provers. A theorem prover is a
software tool, that implements a logic and a derivation system to check and find proofs.
A theorem prover can do all the simple reasoning and take care of the bureaucratic tasks
in a verification (i.e., checking side conditions, ensuring that case distinctions are com-
plete, and so on). The person who carries out the verification can then concentrate on
the important (and difficult) parts. In the present thesis I consider the theorem provers
pvs (Owre et al., 1996) and isabelle/hol (Nipkow et al., 2002b; Nipkow et al., 2002a).
Both tools are interactive theorem provers for higher-order logic.

A coalgebra is a function with a structured codomain like1

step : Aut[A,B] // A⇒ (Aut[A,B]×B)

or equivalently2

step′ : Aut[A,B]× A // Aut[A,B]×B

If you consider Aut[A,B] as the set of (not necessarily finite) automata with input A
and output B then step (or step′) is the transition function that maps any state of
an automaton together with an input from A to a successor state and an output in
B. The set Aut[A,B] is the state space of the coalgebra. Its elements —the states—
are considered as black boxes, that is you cannot investigate their internal structure.
You can only apply the coalgebra step, provide additional input from A and make an
observation in B. You can continue to apply the coalgebra step to the successor state to
obtain more observations. Note that this process can go on for ever, so coalgebras can
very naturally model nonterminating, infinitely running processes.

The set of all observations that one can make about a given element x ∈ Aut[A,B]
by providing all possible inputs and inspecting all successor states in the same way is
called the observable behaviour of x. It is possible that two different states show the
same observable behaviour, in this case they are observably equivalent. The notion of
bisimulation captures observational equivalence formally. A bisimulation is a relation on
the state space of a coalgebra which relates states of the same observable behaviour and

1Here A ⇒ (Aut[A,B] × B) denotes the set of functions A //Aut[A,B]×B , which is often written
as (Aut[A,B]×B)A.

2Recall that functions X //Y ⇒ Z are in one–to–one correspondence with functions X × Y //Z .
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which is closed under taking successor states. In the application domain of coalgebras
one is mainly interested in the question if two systems (or two states) behave in the same
way. If they are equal is usually not of interest. Therefore, for coalgebras, the notion of
bisimulation replaces equality both in specifications and in reasoning.

Coalgebras can easily model exceptional or partial behaviour. Consider3

stepp : PAut[A,B] // A⇒ (PAut[A,B]×B + 1)

or equivalently

step′p : PAut[A,B]× A // PAut[A,B]×B + 1

Elements of PAut[A,B] are (possibly infinite) partial automata that might fail on an
input, producing ∗ ∈ 1 instead of a successor state and an output in B.

A coalgebraic (class) specification consists of a finite set of coalgebra declarations
—the coalgebraic (class) signature— and a finite set of axioms. The axioms are for-
mulated in a logic to be made precise in Chapter 4. Typical axioms require certain
behaviour, for instance4

∀x ∈ PAut[A,B] . stepp x a0 6= ∗

requires that no automaton might fail for a special input a0 ∈ A. Another typical form
of axioms requires that certain states are behaviourally equivalent. Here is an axiom
that requires all automata to behave cyclicly with cycle length two:

∀x ∈ Aut[A,B] . ∀a0, a1 ∈ A . x ↔ π1

(
step (π1 (step x a0)) a1

)
(The relation ↔ denotes the greatest bisimulation and π1 : Aut[A,B]×B //Aut[A,B]
is the first projection.)

Besides bisimulation there are two other important notions for coalgebras: coalgebra
morphisms and invariants . A coalgebra morphism is a structure preserving function
between the state spaces of two coalgebras (for the same signature). An invariant is a
property (of the states of a coalgebra) that, once it holds for a state x, continues to
hold for all direct or indirect successor states of x. Invariants play an important role in
defining logics for coalgebraic specifications and in coalgebraic refinement (see (Jacobs
and Tews, 2001) for a presentation of coalgebraic refinement).

A popular approach is to define both bisimulations and invariants in terms of coal-
gebra morphisms. The definition of coalgebra morphisms relays only on the structure of
the signature.

3Here + describes the disjoint union and 1 = {∗} the one element set.
4Following the hol tradition I write function application without explicit parenthesis. Function appli-

cation associates to the left, so stepp x a0 = (stepp(x))(a0).
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1. Introduction

The present thesis pursues the idea of using algebras and coalgebras to model software.
In general, programming languages provide a framework quite different from set theory.
Different in the sense that constructions that are possible in set theory are not possible in
the programming language (and sometimes vice versa). Similarly for abstract properties
that do or do not hold. For instance, for any two sets A and B one can build the set
A⇒ B of functions from A to B. In contrast most programming language do not allow
the formation of function types. Moreover the programming languages themselves differ.

This suggests to work in a more abstract setting than set theory in which one has
more control over the available constructions and properties. Category theory provides
such a framework. A category can be viewed as an abstraction of an universe of sets. It
contains objects (the abstraction of sets) and morphisms (the abstraction of functions).
In general, a category possesses very little structure. For instance, in order to be able
to talk about pairs one has to assume the existence of products — a certain structure
in the category. This way one can tailor a category to match the properties of a given
programming language very precisely.

When working in an arbitrary category C endofunctors F : C //C play the role of
signatures. (An endofunctor is a mapping from the category onto itself, which is required
to preserve certain structure.) A coalgebra is then simply a morphism X //F (X),
where X —the state space— is an object from C. Similarly an algebra is a morphism
F (X) //X , where F models the algebraic signature. The simple structure of types in
most programming languages implies that also the signatures that one wants to model
have a simple structure. This has further implications about the class of endofunctors
that one has to consider. For many applications it is sufficient to consider only polynomial
functors. Polynomial functors are finitely generated from constants (for constant types
like the booleans), products (for record types), coproducts (for variant records or union),
and exponents (for function types) (polynomial functors are defined in Subsection 2.6.1).

With respect to the logic that is used to reason about specifications and programs
there is a similar argument about the choice of the abstraction level: Different theorem
provers provide logics with slightly different properties. So it is better to work in an
abstract logical setting. The theory of fibrations provides a generalisation of logic within
category theory.

For these reasons the main chapters of the present thesis rely in a nontrivial way on
category theory. The preliminary Chapter 2 provides all the definitions and explains all
the notation that is beyond simple set theory. In particular the first three sections of
Chapter 2 introduce the essential definitions from category theory and fibred category
theory. Section 2.4 presents two fibrations in detail: The fibration of (typed) predicates
and that of (typed) relations. Both fibrations and the properties collected in Section 2.4
are essential for Chapter 3. Section 2.5 and Section 2.6 introduce algebras and coalgebras.
The section on coalgebras contains a collection of results about coalgebras for polynomial
functors that have been collected from the literature. These results are important for
Chapter 3, where I consider generalisations of polynomial functors.
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Binary Methods

Chapter 3 elaborates on the problem of how to formalise arbitrary method types, in-
cluding binary methods, with coalgebras. The term method comes from object-oriented
programming. There the software is organised in classes, which represent data abstrac-
tions and operations. The runtime structures of classes are objects. The operations are
called methods. Every method is associated to one class. The primary computational
model is method invocation, typically written as o.f , where o is an object of some class
with a method f . On invocation the method f gets o as an implicit argument and can
therefore access the data in o. Typically the internal structure of an object is not visible
from the outside (hiding implementation details). If one wants to access the data of an
object one has to use the publicly available methods of its class.

The information hiding aspect and the computational pattern of object orientation
suggest to use coalgebras as a semantic foundation of object orientation. This idea was
first proposed in (Reichel, 1995). There was, however, one deficiency: Classes that contain
binary methods cannot be modelled as coalgebras (for endofunctors). Assume that we
enrich the interface of the automata with a merge method that takes two automata a
and b as arguments and returns their interleaving (which invokes a on the first input to
compute the result, b on the second, and so on). The type of merge is obviously

merge : Aut[A,B]× Aut[A,B] // Aut[A,B]

By exploiting the fact that every function X × Y //Z corresponds uniquely to a func-
tion X //Y ⇒ Z we can present merge in coalgebraic shape:

merge : Aut[A,B] // Aut[A,B] ⇒ Aut[A,B]

Now the state space Aut[A,B] occurs at a contravariant position (at the left hand side
of ⇒) in the codomain of merge. Therefore, the automaton signature with the merge
operation cannot be modelled with a polynomial functor.5

Chapter 3 presents a solution to the problem of binary methods by using bivariant
functors Cop ×C //C to model signatures and an appropriate notion of coalgebra.
To judge if the proposed generalisation makes sense and can be used with benefit I
use the following criterion: First, there must exist sensible definitions of the notions
of coalgebra morphism, bisimulation, and invariant. Second, these notions should have
similar properties like they have for polynomial functors. To facilitate this task the
introductory Section 2.6 on coalgebras lists more than ten results about coalgebras for
polynomial functors (for instance the existence of the final coalgebra, that bisimulations
and invariants form complete lattices and so on).

The generalised definition for coalgebra and coalgebra morphisms is given in Sec-
tion 3.2 (Definition 3.2.2 on page 80). The definition of bisimulation and invariant is in

5More precisely, the coalgebraic signature of merge can be modelled with an endofunctor only on a
category in which every morphism is reversible.
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1. Introduction

Class of Functors Property Example

polynomial constant arguments Self × A // · · ·

extended cartesian
no functional
arguments

Self × Self × Self // · · ·

Self × (Self + A) // · · ·

extended
polynomial

functional arguments
with constant domain

Self × (A⇒ Self) // · · ·

higher-order
polynomial

arbitrary arguments
Self × (Self ⇒ A) // · · ·

Self × (Self ⇒ Self) // · · ·

Table 1.1.: Classes of Functors investigated in Chapter 3

Section 3.3 (Definition 3.3.3 on page 85). Thereby I follow the approach of (Hermida
and Jacobs, 1998) and exploit predicate and relation lifting. A careful investigation of
the properties of these notions yields three different levels of generalisations of polyno-
mial functors. With an increasing level of generality less properties hold in general. See
Table 1.1 for an overview.

The most general class of functors discussed in the present thesis is the class of
higher-order polynomial functors. It is investigated in Section 3.3. For coalgebras of
higher-order polynomial functors only trivial properties hold (like that the equality re-
lation is a bisimulation). Everything else fails (see Fact 3.3.7 on page 88). For instance
Example 3.3.8 shows a coalgebra and two bisimulations for it, such that the intersection
of the two bisimulations is not a bisimulation. The examples that exhibit all these fail-
ures are surprisingly simple: The state space of the coalgebra in the counter examples
contains always less than six elements. Another negative result about coalgebras for
higher-order polynomial functors is that the traditional approach to define bisimulation
via coalgebra morphisms following (Aczel and Mendler, 1989) fails: it yields a notion of
bisimulation that is not closed under taking successor states.

The class of extended polynomial functors is a proper subclass of higher-order poly-
nomial functors. It restricts the use of function types in arguments for methods: For
method arguments of functional type σ ⇒ τ the type σ must be a constant, see Ta-
ble 1.1 for an example. The precise definition is in Section 3.4. For extended polynomial
functors most of the familiar properties hold. For instance bisimulations are closed un-
der intersection and coalgebra morphisms are functional bisimulations. Coalgebras for
extended polynomial functors have the following deficiencies: First, bisimulations and
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invariants are not closed under taking their union. Second, there is no final coalgebra
(see Section 3.6).

The negative result about unions of invariants and and bisimulations can be im-
proved by strengthening the definitions. In Subsection 3.4.6 I show that strong invari-
ants form a complete lattice. With a stronger definition of the notion of bisimulation
the bisimulations for one coalgebra form a (incomplete) lattice, see Subsection 3.4.7. Re-
cent work (Tews, 2002b) shows that this lattice is complete (i.e., a greatest bisimulation
exists) if the coalgebra is a computable function (in the intuitive sense).

Section 3.5 introduces the least generalisation of polynomial functors: The class of ex-
tended cartesian functors (see Definition 3.5.1 on page 108). Extended cartesian functors
do not allow arguments of functional type. They are a subclass of extended polynomial
functors, therefore coalgebras of extended cartesian functors have all the properties of
coalgebras of extended polynomial functors. For extended cartesian functors it is possi-
ble to adopt a result from (Poll and Zwanenburg, 2001): bisimulations that are partial
equivalence relations (on a fixed domain) form a complete lattice (see Theorem 3.5.9 on
page 113). So for extended cartesian functors bisimulations that are equivalence relations
are closed under union. However, also for extended cartesian functors there exist no final
coalgebra in general.

A substantial part of Chapter 3 appeared previously as (Tews, 2000b; Tews, 2001;
Tews, 2002b).

The Coalgebraic Class Specification Language CCSL

Both algebras and coalgebras have their advantages and disadvantages. Coalgebras are
good for representing (possibly) infinitely running processes, algebras are good for finite-
ly generated data types like lists or trees. Software systems usually involve both — data
types and processes. For the specification it is therefore desirable to use a language
that allows both algebraic and coalgebraic specifications. The language should further
allow the nested use of all specifications. That is, it should allow (co)algebraic specifica-
tions that use types that have been defined by an algebraic or coalgebraic specification
before. Such nested specifications are called iterated specifications in this thesis. Chap-
ter 4 describes a language that has these properties: The Coalgebraic Class Specification
Language ccsl.

The design goals of ccsl are:

• to provide a notation for parametrised class specifications based on coalgebras;

• to provide algebraic specifications of abstract data types based on initial algebras;

• to use a familiar logic;

• to restrict expressiveness only when absolutely necessary;

• to provide theorem proving support.

7



1. Introduction

Of course, these design goals are arguable. For instance the second last item implies that
even signatures that correspond to higher-order polynomial functors are accepted in
ccsl. On the one hand, the (almost) unrestricted expressivity shifts much responsibility
to the user of ccsl. He has to be careful not to introduce errors by assuming familiar
properties that do not hold for the generalisation level he chose. On the other hand the
user can himself decide if he wants to trade off general properties for more expressiveness
(or vice verse). In particular one can experiment with signatures for which not much is
known at the moment. The introduction to Chapter 4 discusses the preceding design
goals and their implications further.

Specifications in ccsl can be translated into (their semantics in) the higher-order
logic of the theorem provers pvs and isabelle/hol (in new style Isar syntax). This
makes it possible to examine the properties of a ccsl specification in the theorem prover.
One can, for instance, construct models in the theorem prover and check if they satisfy
the specification. ccsl has already been applied successfully in a number of case studies,
see Section 4.10.

The main contribution of Chapter 4 is the presentation of the specification language
ccsl, its syntax, and its semantics as a whole. Most sections of Chapter 4 contain
—when considered alone— only little original material. For instance the type theory of
ccsl is a specialised version of the polymorphic type theory λ→ from (Barendregt, 1992;
Jacobs, 1999a). The logic of ccsl is a standard higher-order logic over this type theory.
However, the combination of standard results from several areas of theoretical computer
science yields ccsl as a specification language that can express finitely generated data
types and infinite dynamic behaviour equally well.

The design and implementation of ccsl was a group effort in the loop project. loop
stands for Logic of Object-Oriented Programming.6 It is a project on formal methods for
object-oriented languages. It started in 1997 as a joint project between the Katholieke
Universiteit Nijmegen (University of Nijmegen) and the Technische Universität Dresden
(Dresden University of Technology). Apart from myself the following people do or have
been working within the loop project: Joachim van den Berg, Ulrich Hensel, Marieke
Huisman, Bart Jacobs, Erik Poll, and Jan Rothe. There is a certain diversity in the
research done in the loop project. The common underlying base is the use of coalgebras
as a semantics for object orientation and the use of theorem proving support. Apart from
the work that is described in the present thesis, the research in the loop project focuses
on a formal semantics of the programming language Java and the verification of Java
programs (see (Huisman, 2001)), especially for Java Card programs. Another topic is
the design of jml, the Java Modelling Language (see (Leavens et al., 2000)). jml is
an extension of Java that allows one to specify the detailed design of Java classes and
interfaces. The work on ccsl goes back to the beginning of the loop project. All loop
project members have contributed to ccsl in one or the other way, often substantially.

One primary application of the ccsl specification environment is the construction

6The loop project is on the world wide web, see URL http://www.cs.kun.nl/∼bart/LOOP/.
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of refinements . Refinement is a relation between specifications: A concrete specification
C refines an abstract specification A if all models of C satisfy (via a signature transla-
tion) also A. The use of refinements is essential for real world applications of software
specification and verification.

In joint work with Bart Jacobs we devised a notion of coalgebraic refinement in
parallel with the development of ccsl. For several reasons the work on refinement is not
included in the present thesis. An elaborated presentation is in (Jacobs and Tews, 2001).
Subsection 4.10.1 contains a short description of coalgebraic refinement and explains how
to prove refinements when working with ccsl.

The presentation in Chapter 4 concentrates on the less well known and more impor-
tant aspects ofccsl. The first section introduces the type theory of ccsl and the second
section presents a formal notion of variances. Variances allow one to classify types and
signatures into those that correspond to polynomial functors, to extended polynomial
functors, and to higher-order polynomial functors. Section 4.4 and Section 4.5 present
the coalgebraic part of ccsl. Section 4.6 introduces abstract data types and Section 4.7
goes into the semantics of iterated specifications. The more informal Section 4.8 dis-
cusses the relation of ccsl with important aspects of object-oriented programming like
inheritance and late binding. Section 4.9 wraps the description of ccsl up and the fol-
lowing Section 4.10 presents applications of ccsl: Coalgebraic refinement, case studies
that have been done with ccsl, and a translation of an UML example.

Verifying the Thesis

A special feature of the present thesis is its close relationship with the theorem prover
pvs: The thesis does not only describe tools that make it possible to employ pvs for
software verification. In addition, most of the theoretical results and examples that
are presented here have been developed and checked with pvs. The main ideas of the
formalisation that I use are laid out in Subsection 2.4.4. The Appendix A.1 shows some
examples of the pvs code. Propositions and lemmas that have a direct counterpart in
pvs can be recognised by the sentence “This lemma/proposition has been proved in
pvs”, that appears in the proof. The complete pvs sources are available in the world
wide web, see Appendix A for the details. The Appendix A.2 contains a table that relates
the propositions, lemmas, and examples of this thesis with the pvs sources.

Throughout the work on this thesis pvs proved to be an excellent tool for developing
and checking examples and ideas, and, of course, for proving lemmas. However, as usual
for close friendships, I also got to know the less bright shining sides of pvs. The area were
pvs has most development potential is stability and robustness as a software system.
The huge number of submitted bug reports (almost all of them describe problems in the
user interface and not inconsistencies in the logic) witnesses this.
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1. Introduction

Related work

The present thesis builds on earlier work on coalgebras and on coalgebraic specification.
The main motivations for this thesis is the idea of (Reichel, 1995) to use coalgebras
as a semantic foundation of object orientation. In a series of papers (Jacobs, 1995;
Jacobs, 1996a; Jacobs, 1996b; Jacobs, 1997a; Jacobs, 1997b) Jacobs develops this idea
further and builds the basis of what I call coalgebraic specification. A first investigation
of the relation of algebraic specification and coalgebraic specification is in (Hensel and
Jacobs, 1997; Hensel, 1999; Rößiger, 2000a; Rößiger, 2000b). In this work Hensel and
Jacobs develop sufficient criteria for the validity of iterated induction and coinduction
principles. Rößiger proves the existence of initial algebras and final coalgebras for all
iterated functors in the category of sets and total functions. This shows that the carrier
sets for iterated specifications do exist. All this forms the basis of the present thesis.

Currently coalgebras are an active research field, see (Jacobs et al., 1998b; Jacobs
and Rutten, 1999; Reichel, 2000; Corradini et al., 2001). The problem of binary methods
has been know for some time but I am not aware of any other rigorous solution. Jacobs
shows in (Jacobs, 1996a) that one can sometimes avoid the problem by using definitional
extensions. Another partial solution is suggested in (Hennicker and Kurz, 1999): Binary
methods with codomain Self can sometimes be formalised as algebraic extensions.

The roots of the specification language ccsl can be traced back to the early work
of Jacobs cited above. In this work Jacobs considers coalgebraic signatures as (special)
polymorphic signatures. The easiest way to obtain a coalgebraic logic7 is thus to use
a well-known logic (such as equational logic) over coalgebraic signatures. This is the
approach of ccsl. Goldblatt describes in (Goldblatt, 2001a; Goldblatt, 2001b) a first-
order fragment of the logic of ccsl and develops a Birkhoff like theorem for it. The
method-wise modal operators of ccsl come from (Rothe, 2000). Their more general
path-wise version is studied in (Jacobs, 1999b).

The specification language ccsl is very closely related with the programming lan-
guage Charity (Cockett and Fukushima, 1992; Schroeder, 1997). In Charity one
programs only with initial algebras and final coalgebras. Thus, ccsl is the perfect spec-
ification language for Charity programs.

There are many different approaches that lead to a coalgebraic logic. Some authors
are inspired by the idea that a logic for coalgebras (which are dualized algebras) should be
based on dualized equations. Such coequations are presented in (Corradini, 1998; Ĉırstea,
1999). In this work Corradini and Ĉırstea present sound and complete deduction calculi
for a restricted set of coalgebras. Binary methods do not fit into their notion of destructor
signatures. The work in the present thesis is not so much concerned about complete
deduction calculi. The primary goal here is to provide an expressive and convenient
specification environment based on coalgebras.

7I use the term coalgebraic logic as a generic term for all logics that can (potentially) be used in
coalgebraic specification. So the logic described in (Moss, 1999), which is called “coalgebraic logic”
there, is one particular example of a coalgebraic logic.
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Many papers analyse the connection between coalgebras and modal logics, for in-
stance (Moss, 1999; Rößiger, 2000a; Kurz, 2000; Hughes, 2001). All these papers describe
different modal logics for coalgebras. Moss describes characterising formulae (that is, for-
mulae that describe a state up to observable equivalence). Rößiger describes a complete
deduction calculus for his logics and uses modal logic to construct final coalgebras. Kurz
and Huges employ modal logic in their work about a Birkhoff like theorem for coalge-
bras. The development of these modal logics has been driven by mathematical interest.
As a result these logics are not very practical when it comes to expressing properties
in coalgebraic specifications. Therefore all this cited work on modal logics plays only a
secondary role for the present thesis. However, in the design of the modal operators of
ccsl ideas have been drawn from (Rößiger, 2000a).

Hidden algebra (Roşu, 2000; Goguen and Malcolm, 2000) is a branch of (multi-sorted)
algebraic specification in which some sorts of an algebraic signature are considered as
hidden sorts on which no direct observation is possible. Hidden sorts are intended to
capture the state space of automata and of classes. A severe restriction in hidden algebra
is that a hidden signature contains only operations S1 × · · · × Sn

//S0 , where all the Si

are sorts. So in hidden algebra one has neither structured argument types nor structured
result types. Using coalgebras one can model partial operations easily with coalgebras
of the form Self //Self + 1 . In hidden algebra one has to use subsorting.

Another difference between hidden algebra and coalgebraic specification is the ap-
proach to define behavioural equivalence. In coalgebraic specification one uses bisimula-
tions, a notion with which one can compare the behaviour of different models. Hidden
algebra uses the approach of Reichel (Reichel, 1985) of visible contexts to define (what
they call) hidden congruences. As soon as binary methods are present, hidden congru-
ences can only compare states of one model. Bisimulations for coalgebras of polynomial
functors form a complete lattice (Rutten, 2000). However, bisimulations for extend-
ed polynomial functors are not closed under union (Fact 3.3.7, but see also Proposi-
tion 3.4.30 and Theorem 3.5.9). In contrast, in hidden algebra one has always a greatest
hidden congruence even in the presence of binary methods (Roşu, 2000).

Hennicker and Bidoit describe in (Hennicker and Bidoit, 1999) a logical framework
for the specification of observable behaviour of systems. The approach described there is
very similar to hidden algebra. Hennicker and Bidoit also use algebraic signatures with
hidden sorts and exploit Reichels visible contexts to define their notion of observational
equality. As in hidden algebra Hennicker and Bidoit do not allow structured argument
or result types. Further their notion of observational equality cannot relate states of
different models.

There are many other environments for software specification. (Kellomäki, 1997) de-
scribes the specification language DisCo for reactive systems. In DisCo one can describe
the data fields of objects as state charts and specify actions in which the objects en-
gage. The common framework initiative (Mosses, 1997) develops the Common Algebraic
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Specification Language casl8 (Mossakowski, 2000). There are numerous sublanguages of
casl that correspond to the various logics that have been used in algebraic specification.
However, there is no possibility to describe behavioural types in casl.

The universal modelling language UML (Fowler, 1999; OMG, 2001) aims (as ccsl
does) at the abstract description of object-oriented software systems. The UML is mainly
a graphical language that is more concerned about the design process of software systems
(and not so much about a formal description of the software). The Object Constraint
Language OCL (Warmer and Kleppe, 1999; OMG, 1997) is currently developed as a
logic for the UML. A comparison between ccsl and the official UML is impossible at
the time of writing because the UML (and in particular OCL) does not have a precise
semantics (yet). A comparison using a particular semantics of the UML that has been
proposed in the past (for instance (Clark et al., 2001)) would be possible. However,
such a comparison is beyond the scope of this thesis. A translation of a simple UML
example (see Subsection 4.10.3 on page 238) suggests that a large class of UML class
diagrams and OCL constraints can equivalently be expressed in ccsl. An embedding of
ccsl into (the formal parts of) the UML fails because of the limited expressive power of
OCL. Further the UML is very much focused on the object-oriented paradigm. Similar to
many object-oriented programming languages it lacks support for algebraic data types.

8Not to be mixed up with the Custom Attack Simulation Language (casl) (Vigna et al., 2000; Secure
Networks, 1998).
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2. Categorical Preliminaries

In this chapter I introduce the general notions, especially from category theory, that I
use in the following chapters. The first section introduces the very basics: categories,
functors, natural transformations, and adjunctions. The second section gives definitions
for the bicartesian structure in a category to fix the notation for the following chapters.
Section 2.3 defines basic notions from the theory of fibrations. I follow very closely (Ja-
cobs, 1999a). With one exception, one could also say, that Section 2.3 is the simplified
extract of (Jacobs, 1999a) that is necessary to follow the later chapters of this thesis.
The exception is that I discuss the notion of cofibredness in more detail than Jacobs
does. The fourth section explores two fibrations in more detail: The fibration of typed
predicates and that of typed relations. These two fibrations are important in Chapter 3.
The last two sections introduce algebras and coalgebras. In preparation of Chapter 3 the
section on coalgebras describes the notions of bisimulation and invariant and presents
many standard results from the literature.

No section of this chapter attempts to cover its subject completely. Rather, this
chapter presents the material that is necessary for the following chapters. The first
three sections about cartesian closed categories and fibrations present only standard
definitions and results from the literature. Section 2.4 contains (besides many standard
results) some new material (namely the results about cofibredness, see Example 2.4.16
and Lemma 2.4.17 on page 46ff).

The standard reference for category theory is (Mac Lane, 1997), but for computer
scientists I would recommend (Barr and Wells, 1995). An introduction into the theory of
fibrations is in (Jacobs, 1999a) and in (Phoa, 1992). Besides category theory I use basic
set theory in this thesis, which I assume to be known. In the examples and in Chapter 4
I use notation from type theory. These things will be explained when they occur.

All the notation used and introduced in the following is standard, with one exception:
The simple arrow ( // ). It is used with (on first sight) quite different interpretations
in all of category theory, type theory, and logic. Therefore I depart from the standard
notation and use the simple arrow solely to separate the domain and the codomain of a
morphism (or of a function) as in f : X //Y . The exponent (i.e., the function space)
is written as X ⇒ Y , the function type as σ ⇒ τ . Implication is most times spelled out
(i.e., implies). If not I use F ⊃ G to denote that F implies G.
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2. Categorical Preliminaries

2.1. Categories, Functors and Adjunctions

Categories abstract from the set-theoretic element-wise thinking by considering only
objects and structure-preserving mappings between them. A category C consists of a
class of objects denoted by |C| and, for each pair X,Y ∈ |C| of objects, a class C(X, Y )
of morphisms or arrows from X to Y . In category theory one prefers the notation

f : X //Y or X
f //Y instead of f ∈ C(X, Y ) to denote that f is a morphism with

domain X and codomain Y . The class C(X,Y ) is often called the homset of X and Y .
Two arrows f and g are composable if the codomain of f equals the domain of g. To
form a category the classes of objects and morphisms must fulfil the following conditions.
There must be an associative composition operation − ◦ − that assigns to each pair of
composable morphisms f : X //Y and g : Y //Z a morphism g ◦ f : X //Z . For
each object X, there must be an identity morphism idX : X //X which is an identity
for composition, that is f ◦ idX = idY ◦ f = f .

A category D is a subcategory of C if |D| ⊆ |C| and D(X, Y ) ⊆ C(X, Y ) for all
X,Y . Further, composition and identities in D must be as in C. A category C is locally
small if all classes C(X, Y ) are proper sets. If, additionally, the class of objects is a set
then C is small. As foundation I assume a nested hierarchy of collections as in (Adámek
et al., 1990; Bénabou, 1985).

In correspondence with standard notation I use outlined letters like C to denote
arbitrary categories, uppercase Latin letters like A,B,C for objects and lower case letters
like f, g for morphisms.

Example 2.1.1

Category of Sets and total functions. The canonical example of a category is the cat-
egory Set of sets and (total) functions. The objects of this category are the sets.
The morphisms from a set M to a set N are all (total) functions M //N . The
identities are the identity functions and composition of morphisms is given by
composition of functions. The category Set is locally small but not small.

Provability in first-order logic. First-order logic over a signature Σ gives rise to the
following category: objects are formulae F,G of first-order logic. Morphisms are
entailments: There is a morphism F //G if and only if F ` G is provable in first
order logic.

Note that in this category there is at most one morphism between any two objects.
A category with this property is called a preorder category. �

A morphism f : X //Y in a category C is an isomorphism if there exists an inverse
morphism f−1 : Y //X such that f−1 ◦ f = idX and f ◦ f−1 = idY . I use X ∼= Y to
denote that X and Y are isomorphic, that is, that there exists an isomorphism between
them. In the category Set the isomorphisms are the bijective functions.
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For any category C there is the opposite category Cop. It has the same objects as C,
but the morphisms are reversed: Cop(X, Y ) = C(Y,X). So f : X //Y is a morphism
in Cop if f : Y //X is a morphism of C.

Assume now an additional category D. The product category C × D contains as
objects pairs (X,Y ), where X is an object of C and Y is an object of D. The morphisms
of C ×D are also pairs (f, g) : (U, V ) //(X, Y ) such that f : U //X is a morphism
of C and g : V //Y is a morphism of D. It is easy to check that C × D is indeed a
category with composition defined pointwise.

In category theory one often draws diagrams like

A
f //

h ��@
@@

@@
@@

B

g

��
C

to denote that f, g, and h are morphisms between the objects A,B, and C. Such a
diagram commutes if, for any two objects in the diagram, the composition along any
path between these two objects yields equal morphisms. So the above diagram commutes
if g ◦ f = h.

Consider two arrows f : A //C and g : B //C with common codomain. An object
X together with two morphisms u : X //A and v : X //B is called a pullback (for f
and g) and displayed as

X
u //

v

��

A

f
��

B
g // C

if f ◦ u = g ◦ v (the diagram commutes) and if additionally the following holds. For
any object Y with morphisms h : Y //A and k : Y //B such that f ◦ h = g ◦ k
there exists a unique morphism p : Y //X such that u ◦ p = h and v ◦ p = k.
Diagrammatically:

Y
h

##

k

��

p
A

A

AA
  
X

u //

v

��

A

f
��

B
g // C

If the mediating morphism p does exist but is not unique, the same structure is called a
weak pullback.

In category theory one often works with combined uniqueness/existence properties
like in the definition of pullbacks. Such properties are often used to prove that two
morphisms are equal: If, in the above situation, I can construct a morphism p′ : Y //X
such that u ◦ p′ = h and v ◦ p′ = k, then by the pullback property I can conclude that
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2. Categorical Preliminaries

p = p′. Morphisms that are known to be unique are often drawn as dashed arrow ___ //

like the p in the preceding diagram.

A functor is a structure-preserving map between categories. Assume two categories
C and D. A mapping F that assigns objects and morphisms of C to, respectively,
objects and morphism of D is a functor C //D in case the following holds: A morphism
f : X //Y of C is mapped to a morphism F (f) : F (X) //F (Y ) in D. Further, F must
preserve identities, F (idX) = idF (X), and composition F (g ◦ f) = F (g) ◦ F (f). (Note
that the standard notation makes use of overloading here, a functor F : C //D is
both a mapping F : |C| //|D| and a mapping F : C(X, Y ) //D(F (X), F (Y )) for
all X, Y ∈ |C|.) A functor C //C with identical domain and codomain is called an
endofunctor . The identity functor is written IdC : C //C , the composition of two
functors F : C //D and G : D //E is GF : C //E . For a functor G : C×D //E I
write G(f,X) for G(f, idX).

All small categories and the functors between them form the category Cat.

One can think of functors as describing (polymorphic) constructions on data (i.e., on

objects). For instance, let Tup : Set //Set be the functor that is defined as Tup(X)
def
=

X×N, where N denotes the set of natural numbers. The functor Tup can be seen as the
construction that forms the set of tuples X×N for every parameter X. Type expressions
in programming languages are typically modelled with functors. The idea carries on.
One can think of functors as modelling the structural aspects of interfaces of software
modules. In fact, almost every functor in this thesis can be seen as describing some
interface. Under this interpretation a morphism corresponds to a particular operation of
a software module or to a whole program.

Functors as just described preserve the direction of morphisms. To emphasise this
fact, such functors are sometimes called covariant functors. Functors that invert the di-
rection of morphisms are called contravariant functors. Formally, a contravariant functor
C //D is a covariant functor Cop //D . We will see examples of contravariant functors
below.

Functors are related by natural transformations . Assume two (covariant) functors
F,G : C //D . A collection ηX : F (X) //G(X) of morphisms in D indexed by the
objects of C is a natural transformation η : F +3G , if for each morphism f : X //Y
of C the following diagram in D commutes:

X

f

��

F (X)
ηX //

F (f)
��

G(X)

G(f)
��

Y F (Y )
ηY // G(Y )

This diagram sits over

C D
F //

G
//
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2.2. Bicartesian Closed Categories

In the following I display categories (and functors) below the diagrams where this in-
creases clarity.

A very important concept of category theory is that of an adjunction. An adjunction
relates two categories by a pair of functors. Adjunctions are important because their
existence imposes specific structure on the categories they relate. Further, they allow
one to transfer results between the related categories. Proofs in category theory often
proceed by moving forward and backward over an adjunction.

Consider two functors in opposite directions: a functor F : C //D and a functor G :
D //C . Both form an adjunction, written F a G : D //C , if, for all X ∈ |C| and Y ∈
|D|, there exists a bijection between the homsets D(F (X), Y ) and C(X,G(Y )) fulfilling
the naturality condition. I denote this bijection with −∧ : C(X,G(Y )) //D(F (X), Y ).
So if f : X //G(Y ) is a morphism in C, then the adjunction F a G determines a
unique morphism f∧ : F (X) //Y in D. The inverse of −∧ is −∨: If g : F (X) //Y is
a morphism in D, then the adjunction gives a unique morphism g∨ : X //G(Y ) in C.
The naturality condition says that the bijection between the homsets commutes with
composition from the left and the right. For the first case (composition from the left)
consider the following situation:

W

h

��

f◦h

��

F (W )

F (h)

��

(f◦h)∧

��
X

f // G(Y ) F (X)
f∧ // Y

C D

F //

G
oo ⊥

In C the morphism h can be composed with f . Naturality now means, that for arbitrary
f and h the right triangle in D commutes, that is, that f∧ ◦ F (h) = (f ◦ h)∧. The
second case (composition from the right) is very similar: If we have two morphisms

F (X)
g //Y k //Z in D then it must hold that G(k) ◦ g∨ = (k ◦ g)∨ in C.

The morphisms f∧ and g∨ are often called the adjoint transposes of f and g, respec-
tively. If F and G form a pair of adjoint functors F a G then F is the left adjoint of
G and, vice versa, G is the right adjoint of F . Every adjunction involves two natural
transformations. The unit , usually denoted by η : IdC +3GF and the counit , denoted
by ε : FG +3 IdD . Both natural transformation arise as adjoint transposes of identity
morphisms: ηX = idF (X)

∨ and εY = idG(Y )
∧.

There exist a number of equivalent definitions for adjunction, compare Theorem IV.2.
in (Mac Lane, 1997) or Section 13.3 in (Barr and Wells, 1995).

2.2. Bicartesian Closed Categories

Bicartesian closed categories are categories with certain additional structure. Bicarte-
sian closed categories are in the centre of interest of this thesis, because they form a

17



2. Categorical Preliminaries

suitable abstraction of the type theoretic settings of most programming languages. This
subsection introduces the categorical structure that is necessary to model tuple or record
types (products), union or variant types (coproducts), and function types (exponents).

An object 0 in a category C is called initial if, for each object X of C, there exists
exactly one morphism 0 //X . Similarly, an object 1 ∈ |C| is called final if, for all
objects X of C, there exists exactly one morphism X //1 (some authors prefer the
term terminal object). The morphism into the final object is denoted by !X . Note that
C has a final object just in case Cop has an initial one.

Consider the category 1 that consists of one object and only one arrow, the identity
morphism for that object. For any category C there is a functor ! : C //1 that sends
all objects and all morphisms of C to the only object and the only morphism of 1,
respectively (turning 1 into the final object in Cat). The category C has an initial
object if and only if this functor ! has a left adjoint. The left adjoint maps the only
object of 1 to the initial object of C. The counit of this adjunction gives the unique
morphisms out of the initial object. Similarly, if C has a final object, then ! has a right
adjoint that picks out the final object. The unit of this latter adjunction gives the unique
morphisms into the final object.

The category C has finite products if it has a final object (the empty product) and
if for all pairs X and Y of objects of C there exists an object X × Y in C with the

following properties: There exist two projection morphisms X X × Y
π1oo π2 //Y. And

for any object Z of C with a pair of morphisms X Z
foo g //Y, there exists exactly

one morphism Z //X × Y, denoted by 〈f, g〉, such that the diagram below commutes.

Z

f

||yyyyyyyyyyyyyyyy

〈f,g〉

�
�

�
�

��

g

""E
EEEEEEEEEEEEEEE

X X × Y
π1oo π2 // Y

Consider the functor ∆ : C //C×C that sends objects X and morphisms f to
the pairs (X,X) and (f, f), respectively. Assuming an Axiom of Choice of sufficient
strength, one can show that the category C has finite products if and only if there is
an adjunction ∆ a × : C×C //C . The right adjoint × sends pairs of objects to their
product and pairs of morphisms f and g to f × g = 〈f ◦ π1, g ◦ π2〉.

Coproducts are the duals of products. This means that C has coproducts if Cop has
products or, more informally, coproducts are products with all morphisms reversed: The
category C has finite coproducts if it has an initial object (the empty coproduct) and
if for all pairs X and Y of objects of C there exists an object X + Y in C with the

following properties: There exist two injection morphisms X
κ1 //X + Y Y

κ2oo . And

for any object Z of C with a pair of morphisms X
f //Z Y

goo there exists exactly one

18



2.2. Bicartesian Closed Categories

morphism X + Y //Z , denoted by [f, g] such that the diagram below commutes.

X
κ1 //

f

""E
EEEEEEEEEEEEEEE X + Y

[f,g]

�
�

�
�

��

Y
κ2oo

g

||yyyyyyyyyyyyyyyy

Z

(2.1)

Similar to products, finite coproducts give rise to a left adjoint to ∆. Its action on
morphisms is given by f + g = [κ1 ◦ f, κ2 ◦ g].

A category C with products has exponents if for each pair of objects X and Y of
C there exists an object X ⇒ Y and a morphism evalX,Y : (X ⇒ Y )×X //Y with
the following property: For each object Z with a morphism f : Z ×X //Y there exists
exactly one morphism λf : Z //X ⇒ Y such that the following diagram commutes.

X ⇒ Y (X ⇒ Y )×X
eval // Y

Z

λf

�
�
�
�

OO

Z ×X

λf×idX

OO

f

88qqqqqqqqqqqqqqqqq

Exponents can also be characterised by an adjunction. For a fixed object X of C the
functor −×X is left adjoint to X ⇒ −. The functor X ⇒ − can be extended to a mixed
variance functor Cop ×C //C . This latter functor maps two morphisms f : V //U
and g : X //Y to f ⇒ g : U ⇒ X //V ⇒ Y = λ

(
g ◦ evalU,X ◦ (id×f)

)
. The following

diagram illustrates this construction.

(V ⇒ Y )× V eval // Y

(U ⇒ X)× V

(f⇒g)×idV

OO

idU⇒X×f // (U ⇒ X)× U
eval // X

g

OO

A category with finite products and exponents is called cartesian closed. If addition-
ally it has finite coproducts, then it is bicartesian closed.

Example 2.2.1 (Continuing Example 2.1.1.) The initial object in Set is the empty set
with the empty function as unique morphism. Every one-element set is a final object in
Set. The product is given by the cartesian product of sets: M × N = {(m,n) | m ∈
M,n ∈ N}. For two functions f : S //M and g : S //N their pairing 〈f, g〉 is given
by λs : S . (f(s), g(s)).

The last expression involves notation from typed lambda calculus (Barendregt, 1992).
There, λx : X . f(x) denotes a function that maps elements x of type X to f(x). If M is a
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2. Categorical Preliminaries

term of functional type and if N is a term of its domain type, then function application
is written as MN or, to avoid ambiguities, as M(N) or even (M)(N). If M is a λ-
expression, like in (λn : N . n+ 1) (5) then this is called a redex, which can be simplified
by substituting the argument 5 for the formal parameter n. In the example the reduction
would result with the term 5 + 1.

The disjoint union of two sets M ]N = (M ×{1})∪ (N ×{2}) forms the coproduct
in Set. The injection functions pair their arguments with 1 or 2. For instance κ1 =
λm : M . (m, 1). The copairing of two functions is given by case distinction (or pattern
matching):

[f, g] = λz : M ]N . cases z of κ1m : f(m), κ2 n : g(n) endcases

The set of all functions M //N is the exponent of M and N . The canonical map
evalM,N is function evaluation λf : M ⇒ N, m : M . f(m). And for a function f :
Z ×X //Y the unique function λf is given by λz : Z . (λx : X . f(z, x)). �

Example 2.2.2 (Type Theory and Classifying category) A type theory is a for-
mal calculus about terms and types, see (Jacobs, 1999a) for a comprehensive study.
Simple type theories gives rise to syntactically constructed categories, the classifying
categories. The word ‘simple’ here refers to the fact that types do not contain type vari-
ables in these type theories (so there is no polymorphism in a simple type theory). The
classifying category is denoted with C̀ . It can be used to study the given type theory, for
instance its semantics. Here I sketch a simple type theory with products and exponent
types (called λ1× in (Jacobs, 1999a)) and its classifying category. This example paves
the way for Example 2.3.4 (on page 27) and also for the first sections of Chapter 4 that
describe the polymorphic type theory of the specification language ccsl.

Arbitrary types are usually denoted with lowercase Greek variables like τ, σ. In a
type theory with products one always has the unit type 1 (for the empty product).
More atomic types are usually drawn from a signature, but this is not important for this
example. The set of types is inductively defined: For any two types τ and σ their product
τ × σ and their exponent1 τ ⇒ σ is a type. Sometimes one has a derivation system that
allows one to derive typing judgements ` τ : Type precisely if τ is a valid type in the
type theory. For this example such a derivation system would contain (among others)
the following rules:

Unit

` 1 : Type

Product

` τ : Type ` σ : Type
` τ × σ : Type

Exponent

` τ : Type ` σ : Type
` τ ⇒ σ : Type

In these rules the assumptions are above the line (so the rule Unit has no assumptions)
and the conclusion is below. For instance the rule Product should be read as follows:

1In the literature the exponent type is usually written as τ //σ , but in this thesis the simple arrow
// is reserved for morphisms.
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2.2. Bicartesian Closed Categories

If both τ and σ are types (i.e., there are derivations for the sequents ` τ : Type and
` σ : Type) then also τ × σ is a type (i.e., you can build a derivation for ` τ × σ : Type
by plugging the two derivations for τ and σ into the assumptions of the product rule).

In addition to the set of types, the type theory describes how to build terms and
which type a given term has. Arbitrary terms are denoted with lowercase Latin letters
like s, t. Terms may contain variables. For variables I use also lowercase Latin letters like
x, y. A variable is free if it is not bound by a variable binder like λ or ∀. A term with
no free variables is a closed term. In general the type of the free variables is important,
therefore the free variables that may occur in a term t are collected in a context Γ = x1 :
τ1, . . . , xn : τn. Formally a context is a finite list of variable declarations xi : τi, where all
the variables are pairwise distinct.2 A term judgement has the form

Γ ` t : σ

where Γ is a context, t is a term, and σ is a type. A term judgement is the formal
statement that the term t has type σ if the free variables in t have types according to
Γ. The main ingredient of a type theory is a derivation system for term judgements. If
a judgement Γ ` t : σ can be derived one says that the term t inhabits the type σ. A
type is empty if it has no inhabitants. The derivation system ensures that a judgement
Γ ` t : σ can only be derived if all free variables of t are declared in Γ.

A type theory with product and exponent types typically contains the following
derivation rules:

ground terms

` τi : Type
x1 : τ1, . . . , xn : τn ` xi : τi Γ ` ∗ : 1

product

Γ ` s : σ Γ ` t : τ
Γ ` (s, t) : σ × τ

Γ ` t : σ × τ
Γ ` π1 t : σ

Γ ` t : σ × τ
Γ ` π2 t : τ

exponent

` σ : Type Γ, x : σ ` t : τ

Γ ` λx : σ . t : σ ⇒ τ
x /∈ Γ

Γ ` t : σ ⇒ τ Γ ` s : σ
Γ ` t s : τ

Note that in the derivation rule for lambda abstraction the side condition x /∈ Γ and
the first assumption ` σ : Type are redundant: If Γ, x : σ is a valid context then σ is

2This distinction can formally be ensured by using natural numbers as variables. See (Jacobs, 1999a)
Section 2.1. Such rather technical issues are not relevant here.
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2. Categorical Preliminaries

a type and x cannot occur in Γ (because all variables in a context must be distinct). I
prefer to state redundant assumptions if this makes important details explicit.

In the term λx : σ . t : σ ⇒ τ the variable x is called a bound variable. It is clear that
renaming a bound variable in a term t does not change the meaning of t. The process
of renaming a bound variable is called α–conversion and two terms that differ only in
the names of bound variables are called α–equivalent. One can avoid α–conversion if one
represents bound variables with de Brujin indices (de Bruijn, 1972). Unfortunately, de
Bruijn indices are not really suitable for human consumption.

Substitution denotes the process of replacing a free variable x in a term t with a
term s. In this thesis I write t[s/x] to denote the result of substituting the term s for
the variable x in t. Substitution can be defined by induction on the term structure:

∗[s/x] = ∗
x[s/x] = s
y[s/x] = y for x 6= y
(t1, t2)[s/x] = (t1[s/x], t2[s/x])
(πi t)[s/x] = πi (t[s/x])
(λx : σ . t)[s/x] = (λx : σ . t)
(λy : σ . t)[s/x] = (λy : σ . t[s/x]) if x 6= y and y is not free in s
(t1 t2)[s/x] = (t1[s/x]) (t2[s/x])

The side condition for the substitution (λy : σ . t)[s/x] does not pose any problems,
because one can always apply α–conversion and rename the bound variable y in t.

By induction over the structure of a derivation of a term judgement one can prove
the rule

term substitution
Γ ` s : σ Γ, x : σ ` t : τ

Γ ` t[s/x] : τ
x /∈ Γ

Another important ingredient of a type theory are the conversions. Conversions de-
scribe which terms are thought to be equal although their syntactic appearance is dif-
ferent. We already saw α–conversion for renaming bound variables. β–conversion deals
with the intended operational behaviour of terms:

πi(s1, s2) = si

(λx : σ . t) s = t[s/x]

Extensionality of functions is expressed by η–conversion:

λx : σ . s x = s
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2.3. Fibrations

provided that x is not free in s. One usually extends conversion to an equivalence relation
that is compatible with the term forming operations. Then we have also

s = s′ implies λx : σ . s = λx : σ . s′

s = s′ ∧ t = t′ implies (s, t) = (s′, t′)

An important lemma, which one could prove now, is that conversion preserves types.
That is, if Γ ` t : σ and t = s then also Γ ` s : σ. In the following, equivalence classes
of terms under conversion are important. They are written as [t] = {s | s = t}.

For a simple type theory as the one sketched here the classifying category C̀ is
defined as follows: Objects of C̀ are contexts Γ = x1 : τ1, . . . , xn : τn. For two contexts
Γ and ∆ = y1 : σ1, . . . , ym : σm, a morphism Γ //∆ is an m–tuple ([t1], . . . , [tm]) of
equivalence classes of terms such that Γ ` ti : σi can be inferred in the given type theory.
The identity morphisms of C̀ are (equivalence classes of) variable tuples. For instance
([y1], . . . , [ym]) : ∆ //∆ is the identity morphism of the context ∆. Composition of
morphisms is given by substitution. Assume two morphisms ([t1], . . . , [tm]) : Γ //∆ and
([s1], . . . , [sk]) : ∆ //Θ. Their composition is then

([s1[t1/y1, . . . , tm/ym] ], . . . , [sk[t1/y1, . . . , tm/ym] ]) : Γ // Θ

The classifying category has finite products, even if the original type theory does
not have product types. The product of two contexts is their concatenation (modulo a
suitable renaming to avoid name clashes). The projection morphisms are the obvious
tuples of variables. The empty context is a final object in C̀ . �

2.3. Fibrations

Fibrations provide a categorical formalisation of predicate logic. In Chapter 3 I inves-
tigate properties of invariants and bisimulations for an extended notion of coalgebra.
Much of this reasoning will take place in the fibration of (typed) predicates. This section
introduces the notions from fibred category theory that will be needed there.

Consider a functor p : E //B . If p is intended to be a fibration it is written in the

following way:
E
↓p
B

. Here, the category B is called the base and E is called the total

category. An object X from the total category E is above or over an object I from the
base B if pX = I. Similarly for morphisms: f : X //Y is said to be above (or over)
u : I //J if p f = u (which implies that X is over I and Y over J).

A morphism f in the total category E is vertical if it is over some identity, that is if
p f = idI for some object I. For every object I of the base there is the subcategory EI of
the total category that consists of all objects over I and all vertical morphisms between
them. This subcategory EI is called the fibre over I. If X and X ′ are objects over I, then
EI(X,X

′) denotes the homset in EI , that is, EI(X,X
′) stands for all vertical morphisms
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from X to X ′. For a morphism u : I //J in the base and two objects X and Y above
(respectively) I and J the set of morphisms over u is denoted by Eu(X, Y ). Formally

Eu(X,Y ) = {f | f ∈ E(X,Y ) and p f = u}

Definition 2.3.1 (Fibration) Consider a functor
E
↓p
B

.

1. A morphism f : X //Y above u : I //J is cartesian over u if for every morphism
g : Z //Y, for which there exists a morphism w : pZ //I such that p g = u ◦ w,
there exists a unique morphism h : Z //X above w such that g = f ◦ h.

Z

h C
C

C
C

!!

g

&&
X

f
// Y

pZ

w
!!B

BB
BB

BB
B p g

&&
I u

// J

E

B

��

p

2. The functor
E
↓p
B

is a fibration if, for all objects Y in the total category and all

morphisms u : I //p Y , there exists a cartesian morphism f : X //Y over u.

If
E
↓p
B

is a fibration one also says that E is fibred (via p ) over B. Cartesian morphisms

with the same codomain are unique up to isomorphism: If f : X //Y and f ′ : X ′ //Y
are both cartesian morphisms over the same arrow in the base category then there exists
a canonical (vertical) isomorphism ϕ : X //X ′ . This isomorphism is canonical in the
sense that it commutes with f and f ′, that is, we have f ′ ◦ ϕ = f (which implies
f ◦ ϕ−1 = f ′).

Because cartesian morphisms are unique up to isomorphism it makes sense to choose
a particular cartesian morphism for every arrow in the base category. A fibration is cloven
if it comes equipped with a choice of cartesian liftings for the morphisms of the base
category. In this case I write û : u∗ Y //Y for the cartesian morphism over u : I //p Y .
In a cloven fibration, for every morphism u : I //J, the operation u∗ extends to a
functor EJ

//EI between the fibres. This functor u∗ is called the substitution functor
along u.

Assume a cloven fibration
E
↓p
B

and consider two composable morphisms in the base

category: I u //J
v //K . For any object Y above K there are the following two canon-

ical isomorphisms: u∗ (v∗ Y ) ∼= (v ◦ u)∗ Y and id∗K Y ∼= Y . A fibration for which both
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2.3. Fibrations

isomorphisms are identities is called a split fibration. For the rest of this thesis I restrict
my attention to cloven fibrations. (Every fibration can be turned into a cloven fibration
by exploiting an Axiom of Choice of suitable strength.)

In a cloven fibration every morphism f : X //Y in the total category can be de-

composed into f = p̂ f ◦ f̃ , where p̂ f is the cartesian arrow over p f and f̃ is the vertical
morphism that is uniquely determined by the properties of a fibration. Thus, we get
for every u : I //J in the base an isomorphism between homsets in the total category
Eu(X, Y ) ∼= EI(X, u

∗ Y ).
A preorder fibration is a fibration in which all the fibres are preorder categories, that

is, there is at most on vertical morphisms between any two objects in any fibre. This
section applies to fibrations in general (i.e., not only to preorder fibrations), but all
concrete fibrations studied in the present thesis are preorder fibrations.

The contravariant nature of the exponent forces me to consider also cofibrations in

this thesis (they are called opfibrations in (Jacobs, 1999a), Section 9.1). A functor
E
↓p
B

is a cofibration if it is a fibration when considered as a functor
Eop
↓p
Bop . For convenience I

spell out the definition.

Definition 2.3.2 (Cofibration) Consider a functor
E
↓p
B

.

1. A morphism f : X //Y above u : I //J is cocartesian over u if for every
g : X //Z , for which there exists a morphism w : J //pZ such that p g = w ◦ u,
there exists a unique morphism h : Y //Z above w such that g = h ◦ f .

Z

X
f

//

g
11

Y
h

{
{

{
{

==

pZ

I u
//

p g
22

J

w

>>||||||||

E

B

��

p

2. The functor
E
↓p
B

is a cofibration if, for all objects X in the total category and all

morphisms u : pX //J , there exists a cocartesian morphism f : X //Y over u.

3. The functor
E
↓p
B

is a bifibration if it is a fibration and a cofibration at the same

time.
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The notions of a cloven or split cofibration are defined in the same way as for fi-

brations. A cofibration
E
↓p
B

is cloven (split) if
Eop
↓p
Bop is a cloven (split) fibration. From

the structure of a cloven cofibration we obtain for every morphism u : I //J in the
base a cosubstitution or better coproduct functor EI

//EJ . This coproduct functor is
denoted by

∐
u . Similar to fibrations one obtains

∐
v (
∐

u X) ∼=
∐

v◦u X for any pair of

composable arrows I u //J v //K and
∐

id X
∼= X.

Consider again a fibration
E
↓p
B

. The substitution functors u∗ can have left and right

adjoints. The left adjoint to u∗ is called the coproduct along u and denoted by
∐

u . The
right adjoint

∏
u ` u∗ is called the product along u. The clash in naming and notation

of the coproduct functor is intended and is justified in the following lemma.

Lemma 2.3.3 A fibration
E
↓p
B

is also a cofibration if and only if each substitution func-

tor u∗ has a left adjoint
∐

u .

For illustration I copy the proof from (Jacobs, 1999a).

Proof Because
E
↓p
B

is a fibration we have an isomorphism between homsets for an

arbitrary morphism u : I //J in the base:

EI(X, u
∗ Y ) ∼= Eu(X, Y ) (∗)

An adjunction
∐

u a u∗ amounts to isomorphic homsets

EJ(
∐

u X, Y ) ∼= EI(X, u
∗ Y ) (†)

Combining both (∗) and (†) gives

EJ(
∐

u X, Y ) ∼= Eu(X, Y ) (‡)

that is, that
E
↓p
B

is a cofibration. Similarly (†) is obtained from (∗) and (‡). �

When working with a fibration one can distinguish different views. One can inves-
tigate the structure in the single fibres, the structure in the total category, and the
structure between the fibres. An example of the structure between the fibres are the
substitution functors and their adjoints. It often happens that a fibration possesses a
given structure or property both in the total category and in all the fibre categories. It is
therefore important to be precise and to distinguish the structure of the total category
and the structure of the fibre.
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A fibration has fibred products (fibred coproducts or fibred exponents) if each fibre
category has products (coproducts or exponents, respectively) and if the substitution
functors preserve this structure. That is, if X ∧ Y is the product of two objects in
the fibre over J and if u : I //J is a morphism in the base, then it is required that
u∗ (X ∧ Y ) ∼= (u∗X) ∧ (u∗ Y ). Because the main motivation for fibrations is logic, I
use ∧, ∨, and ⊃ for the fibred product, the fibred coproduct, and the fibred exponent,
respectively.

Example 2.3.4 In Section 2.4 (starting on page 34) I construct the fibration of typed
predicates and that of typed relations and discuss their properties in detail. Here I show
a syntactic example of a fibration: Consider a classifying category C̀ for a simple type
theory with product types and exponents as presented in Example 2.2.2. A logic for
this type theory forms a fibration over C̀ with additional structure depending on the
properties of the logic. In this example I describe this fibration for predicate logic.

Predicate logic has rules for building well-formed formulae and for deriving valid
sequents. Judgements for well-formed formulae have the form Γ ` ϕ : Prop. If one
views Prop as the special type of formulae, then this is just a term judgement for the
type of formulae. Assuming that basic propositions are given as a set of judgements
x : τ ` P (x) : Prop, there are the following rules for atomic formulae:

equality

Γ ` s : τ Γ ` t : τ
Γ ` s = t : Prop

predicate

Γ ` t : τ x : τ ` P (x) : Prop

Γ ` P (t) : Prop

Rules for complex formulae are for instance:

conjunction

Γ ` ϕ : Prop Γ ` ψ : Prop
Γ ` ϕ ∧ ψ : Prop

disjunction

Γ ` ϕ : Prop Γ ` ψ : Prop
Γ ` ϕ ∨ ψ : Prop

universal quantification

` τ : Type Γ, x : τ ` ϕ : Prop
Γ ` ∀x : τ . ϕ : Prop

x /∈ Γ

existential quantification

` τ : Type Γ, x : τ ` ϕ : Prop
Γ ` ∃x : τ . ϕ : Prop

x /∈ Γ

When discussing a logic attention is often only devoted to the derivation system for
valid logical entailments. Judgements for logical entailments have the form Γ | ϕ ` ψ.
Here Γ is again a context of variable declarations, and ϕ and ψ are well-formed proposi-
tions under the context Γ. The intended meaning of Γ | ϕ ` ψ is that ψ can be deduced
(by using the rules of the logic) from ϕ. Rules for deriving valid entailments are for
instance:

and
Γ | ϕ ` ψ Γ | ϕ ` ρ

Γ | ϕ ` ψ ∧ ρ

axiom

Γ | ϕ ` ϕ
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cut

Γ | ϕ ` ψ Γ | ψ ` ρ
Γ | ϕ ` ρ

substitution

Γ, x : τ | ϕ ` ψ Γ ` t : τ

Γ | ϕ[t/x] ` ψ[t/x]

The substitution rule is usually a derived rule.
Similar to the classifying category there exists a category L that describes this logic

and the valid implications in it. Recall from Example 2.2.2 that the classifying cat-
egory has variable contexts Γ as objects and tuples of equivalence classes of terms
([t1], . . . , [tn]) as morphisms. In the following I identify an equivalence class of terms
with its representative, writing t instead of [t]. Objects of L are well-formed propo-
sitions Γ ` ϕ : Prop. Assume now variable contexts Γ = x1 : τ1, . . . , xm : τm and
∆ = y1 : σ1, . . . , yn : σn and two propositions Γ ` ϕ : Prop and ∆ ` ψ : Prop. A mor-
phism (Γ ` ϕ) //(∆ ` ψ) in L is a morphism (t1, . . . , tn) : Γ //∆ in C̀ such that one
can formally infer Γ | ϕ ` ψ[t1/y1, . . . , tn/yn].

The L that I just described is indeed a category. It has identity morphisms, because
of the axiom rule. The composition in L is given by the composition in C̀ . Consider
for instance the propositions x : τ ` ϕ, y : σ ` ψ, and z : ρ ` χ. Let t : ϕ //ψ and
r : ψ //χ be morphisms in C̀ . This means that one can infer x : τ | ϕ ` ψ[t/y] and
y : σ | ψ ` χ[r/z]. By the substitution and cut rule one gets x : τ | ϕ ` χ

[
r[t/y] / z

]
, so

r[t/y] : ϕ //χ is a morphism in L.

The forgetful functor
L
↓U
C̀ that sends propositions Γ ` ϕ to their variable context Γ

and morphisms in L to the underlying morphisms in C̀ , is a fibration. For a context Γ
from C̀ , the fibre LΓ is a preorder category whose objects are the well-formed propositions
in context Γ. For a term x : τ ` t : σ (which is a morphism (x : τ) //(y : σ) in C̀ ) and a
proposition y : σ ` ψ(y) the cartesian morphism over t is t itself regarded as a morphism
in L: (x : τ ` ψ[t/y]) //(y : σ ` ψ(y)). The substitution functor for t does substitution:
it sends y : σ ` ψ(y) to x : τ ` ψ[t/y]. The fibres of L are bicartesian closed categories
if the logic supports the propositional connectives conjunction ∧, disjunction ∨, and
implication ⊃ with the usual proof rules (which are omitted for brevity here).

Consider in the following the context Γ = x1 : τ1, . . . , xn : τn and the morphism
(x1, . . . , xn) : Γ, x : τ //Γ in C̀ that forgets the variable x. Because this morphism can
be seen as a projection morphism of a product I denote it with π in the following. The
substitution functor π∗ maps propositions Γ ` ϕ : Prop to Γ, x : τ ` ϕ : Prop. This
operation of adding a fresh variable to the context is called (variable context) weakening .
The corresponding derivation rule is as follows.

weakening

Γ | ϕ ` ψ
Γ, x : τ | ϕ ` ψ x /∈ Γ

Consider now the proof rules for the quantifiers. It is well known that the usual
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introduction and elimination rules for universal and existential quantifiers are equivalent
to the following two rules (see for instance Lemma 4.1.8. in (Jacobs, 1999a)):

Γ, x : τ | ϕ ` ψ
Γ | ϕ ` ∀x : τ . ψ

∀–mate
Γ, x : τ | ϕ ` ψ

Γ | ∃x : τ . ϕ ` ψ ∃–mate

(The double line in the preceding rules signals that the rules can be used in both di-
rections upwards and downwards.) These two rules show that universal and existential
quantification are right and left adjoints to weakening, respectively.

This example depicted the connection between logic and fibred category theory. Fi-
brations are built around the notion of substitution. Propositional connectives arise from
the cartesian closed structure of the fibre categories. Existential and universal quantifi-
cation are (respectively) left and right adjoints to weakening functors π∗ . �

For later reference I define two important conditions on fibrations.

Definition 2.3.5 (Beck–Chevalley) Let
E
↓
B

be a fibration with left adjoints to sub-

stitution functors and assume a pullback square in B:

K
q //

p

��

L

g

��
I

f // J

The fibration satisfies the Beck–Chevalley condition for this pullback, if for any object
X in EI the (canonical) vertical morphism

∐
q p
∗X //g∗

∐
f X is an isomorphism in

the fibre over L.

Remark 2.3.6 The canonical arrow arises as adjoint transpose of the unit η from the
adjunction

∐
f a f∗ in the following way:

X
ηX // f∗

∐
f X

apply p∗
p∗X // (f ◦ p)∗

∐
f X

pullback square

p∗X // (g ◦ q)∗
∐

f X ∐
q a q∗∐

q p
∗X // g∗

∐
f X

For an elaborated discussion of the Beck–Chevalley condition see Section 1.9 of (Jacobs,
1999a).
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Definition 2.3.7 (Frobenius) Let C and D be categories with binary products that
are related by a pair L a R of adjoint functors L : C //D and R : D //C . Assume
that the functor R preserves products. The adjunction L a R satisfies the Frobenius
condition if the following diagram commutes (canonically) up to isomorphism.

C×D Id×R //

L×Id

��

C×C × // C

L

��
D×D × //D

Remark 2.3.8

1. The preceding diagram commutes in Cat up to isomorphism if for any objects
X ∈ |C| and Y ∈ |D| there is an isomorphism L(X ×RY ) ∼= L(X)× Y in D.

2. The canonical isomorphism arises as adjoint transpose of η× idR Y , where η is the
unit of the adjunction L a R:

X ×RY
η × id // R(LX)×RY

R preserves ×
X ×RY // R(L(X)× Y )

L a R
L(X ×RY ) // L(X)× Y

3. In this thesis the Frobenius condition is only used when the categories C and D
are fibres of a fibration and when R is a substitution functor. Let u : I //J be

an arrow in the base of the fibration
E
↓p
B

. Then the coproduct along u fulfils the

Frobenius condition if, in the fibre over J for arbitrary X ∈ EI and Y ∈ EJ , it
holds that ∐

u (X ∧ u∗ Y ) ∼= (
∐

u X) ∧ Y

Example 2.3.9 The Beck–Chevalley and the Frobenius condition are complicated ab-
stract conditions that can become quite trivial for familiar fibrations. Consider the fol-
lowing pullback square in the category C̀ from Example 2.2.2. I assume that t is a term
of type ρ with one free variable y : σ.

(x : τ)× (y : σ)
π2 //

id×t
��

(y : σ)

t
��

(x : τ)× (z : ρ)
π2 // (z : ρ)
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Assume now a proposition x : τ, z : ρ ` ϕ : Prop. The Beck–Chevalley condition for

this pullback square in the fibration
L
↓
C̀ is t∗

∐
π2
ϕ ∼=

∐
π2

(id × t)∗ ϕ. If we take into

account, that
∐

π2
corresponds to existential quantification over x and that t∗ is the

substitution of t for z we can reformulate the condition. It says that in variable context
y : σ both propositions (∃x : τ . ϕ)[t/z] and ∃x : τ . (ϕ[t/z, x/x]) must be provably
equivalent. This is indeed the case, because t has no free occurrences of the variable x.

Consider now the adjunction
∐

π2
a π∗2 for the projection (x : τ)× (z : ρ)

π2 //(z : ρ).
Assume another proposition z : ρ ` ψ : Prop. In the syntax of the logic, the Frobenius
condition for this adjunction states the following (recall that π∗2 is weakening, which has
no correspondence in the concrete syntax). In variable context z : ρ both propositions
∃x : τ . (ϕ ∧ ψ) and (∃x : σ . ϕ) ∧ ψ must be provable equivalent (which indeed holds
because x is not free in ψ). �

A morphism between fibrations
D
↓p
A

//
E
↓q
B

is a pair of functors (H : D //E , K :

A //B) such that q ◦ H = K ◦ p and that H sends cartesian morphisms in D to
cartesian morphisms in E. In this case H is also called a fibred functor over K or more
shortly H is fibred over K.

Under the assumption that the equation q ◦ H = K ◦ p holds the condition that
H preserves cartesian morphisms is equivalent to the following statement: For all mor-
phisms u : I //J in A and objects Y over J we have a canonical vertical isomorphism
ϕ : H(u∗ Y ) //(K u)∗ (H Y ) in E. Being canonical means that ϕ commutes with the

liftings, that is that K̂ u ◦ ϕ = H û (which implies H û ◦ ϕ−1 = K̂ u). In a preorder
fibration every vertical isomorphism H(u∗ Y ) ∼= (K u∗ ) is canonical. In proofs that es-
tablish fibredness of a functor I will always use the latter condition and construct an
isomorphism.

The investigation of the exponent in Subsection 2.4.3 forces me to generalise the
notion of a morphism between fibrations to (pairs of) contravariant functors and to
cofibrations. These generalisations are not explicit in (Jacobs, 1999a) but they arise
in the following way. A pair of functors between two cofibrations is cofibred if it is
fibred when regarded as functors between the corresponding fibrations. Further, a pair
of contravariant functors is (co–)fibred, if it is (co–)fibred when considered as ordinary
functors with opposite domains. The precise definition is as follows.

Definition 2.3.10 Consider two bifibrations
D
↓p
A

and
E
↓q
B

(that is
D
↓p
A

and
E
↓q
B

are

both fibrations and cofibrations).

1. A contravariant functor H : Dop //E is fibred over K : Aop //B if q ◦ H = K ◦
p and if H sends cartesian morphisms in Dop (i.e., cocartesian morphisms in D)
to cartesian morphisms in E.
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2. A covariant functor H : D //E is cofibred over K : A //B if q ◦ H = K ◦ p
and if H sends cocartesian morphisms in D to cocartesian morphisms in E.

3. A contravariant functor H : Dop //E is cofibred over K : Aop //B if q ◦ H =
K ◦ p and if H sends cocartesian morphisms in Dop (i.e., cartesian morphisms in
D) to cocartesian morphisms in E.

Note that the assumption of two bifibrations is the least common basis of the three
definitions. For instance, to define the notion of covariant cofibred functors (which coin-
cides with the notion of morphisms between cofibrations) it is only necessary to assume

that
D
↓p
A

and
E
↓q
B

are cofibrations. In this thesis I use the terms of fibredness and cofi-

bredness only with respect to bifibrations.

Lemma 2.3.11 Let
D
↓p
A

and
E
↓q
B

be two bifibrations as in the preceding definition and

assume that X is an object in D and that u is a suitable morphism in A. Assume further
that for suitable functors K and H the commutation property q ◦ H = K ◦ p holds.

1. A contravariant functor H is fibred over K if and only if there is a canonical
isomorphism (Ku)∗ (H X) ∼= H(

∐
u X).

2. A covariant functor H is cofibred over K if and only if there is a canonical iso-
morphism

∐
Ku (H X) ∼= H(

∐
u X).

3. A contravariant functor H is cofibred over K if and only if there is a canonical
isomorphism

∐
Ku (H X) ∼= H(u∗X). �

Fibredness and cofibredness properties are important for Chapter 3 on binary meth-

ods. Especially I have to investigate if, for a bifibration
E
↓
B

, the bicartesian closed struc-

ture of E is (co–)fibred over the bicartesian closed structure of B. Let me try to explain
what this means in detail.

Recall from Section 2.2 that the cartesian closed structure for a category C can
be given by functors C×C //C (for product and coproduct) and Cop ×C //C (for

the exponent). Assume in the following a bifibration
E
↓p
B

where both the base and the

total category are bicartesian closed. Assume that this bicartesian structure is given
by functors ~B : B×B //B (for the product or the coproduct of the base), ~E :
E×E //E (for the product or the coproduct of the total category), �B : Bop ×B //B

(for the exponent of the base), and finally �E : Eop ×E //E (for the exponent of the
total category). The bicartesian closed structure of E is (co–)fibred if both ~E is (co–
)fibred over ~B and �E is (co–)fibred over �B.
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The product and the coproduct are both given by strictly covariant binary functors.
So to find out what it means that ~E is (co–) fibred over ~B we have to double the
conditions for covariant fibred and for covariant cofibred functors. We get that ~ is
fibred if

p ◦ ~E = ~B ◦ (p× p) (2.2)

and if for arbitrary morphisms u : I //J and v : K //L in the base B and for all
objects X over J and Y over L there is an isomorphism

(u~B v)
∗ (X ~E Y ) ∼= (u∗X) ~E (v∗ Y ) (2.3)

The functor ~E is cofibred over ~B if p,~E, and ~B commute as before. This time the
required isomorphism is∐

u~Bv (U ~E V ) ∼= (
∐

u U) ~E (
∐

v V )

Here, u : I //J and v : K //L are arbitrary morphisms in B as before and U and V
are objects over (respectively) I and K.

For the exponent the situation is more difficult, because it is contravariant in its first
argument and covariant in its second argument. So to find out what it means for �E to
be (co–) fibred over �B we have to apply the definition for contravariant (co–) fibred
functors to the first position and that of covariant (co–) fibred functors to the second
position. Again the basic requirement is that � and p commute:

p ◦ �E = �B ◦ (p× p)

Because of the contravariant first argument we have to be careful to turn the right
morphisms around. Assume two arrows u : I //J and v : K //L in the base category.
Then u�B v is an arrow J �B K //I �B L . The exponent �E is fibred over �B if for
all such morphisms u and v in the base and for all objects U over I and Y over L there
is an isomorphism

(u�B v)
∗ (U �E Y ) ∼= (

∐
u U) �E (v∗ Y )

in the fibre over J �B K.
As a last variation of this theme, �E is cofibred over �B if for all morphisms u and

v as before and for all objects X over J and V over K there is an isomorphism∐
(u�Bv) (X �E V ) ∼= (u∗X) �E (

∐
v V )

in the fibre over I �B L.

Example 2.3.12 The Sections 2.4.1 and 2.4.2 (starting on page 35) investigate all com-
binations of co– and contravariant (co–) fibredness for two concrete bifibrations: typed
predicates and typed relations.
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Here I continue the syntactic example of the fibration
L
↓
C̀ . Consider the functor ×L :

L × L //L . It sends two predicates Γ ` ϕ and ∆ ` ψ to their conjunction Γ,∆ ` ϕ∧ψ
where ∆ and ψ arise from (respectively) ∆ and ψ via a renaming of the variables in ∆.
The renaming is necessary to make the concatenation of Γ and ∆ a context with distinct
variables again. The functor ×L defines products in the total category L.

Now let us look, what it means for ×L to be a fibred functor (over the product in
C̀ ). Because the product of two contexts in C̀ is their concatenation, Equation 2.2 states
that also ×L must concatenate the contexts of the predicates. Additionally Equation 2.3
must hold. To reformulate this equation in the syntax of the logic, assume four contexts
Γ,Γ′,∆, and ∆′ where Γ = x1 : τ1, . . . , xn : τn and ∆ = y1 : σ1, . . . , ym : σm. Assume
further two predicates Γ ` ϕ and ∆ ` ψ and two morphism (t1, . . . , tn) : Γ′ //Γ and
(s1, . . . , sm) : ∆′ //∆ in C̀ . Equation 2.3 states that for all such predicates and terms
the two predicates

Γ′,∆′ ` (ϕ ∧ ψ)[t1/x1, . . . , tn/xn, s1/y1, . . . , sm/ym]

and
Γ′,∆′ ` (ϕ[t1/x1, . . . , tn/xn]) ∧ (ψ[s1/y1, . . . , sm/ym])

are provably equivalent (which is indeed the case). �

2.4. Predicate Logic over Sets

This section introduces two fibrations in detail. Namely the fibration of typed predicates
and that of typed relations. Let me explain why I decided to work with the two concrete

fibrations
Pred
↓

Set
and

Rel
↓

Set×Set
instead of assuming an arbitrary bifibration

E
↓p
B

with

additional properties.
Indeed the whole development of this section (and also of Chapter 3 where I extend

the notion of coalgebras to allow for binary methods) could be done for an arbitrary

bifibration
E
↓
B

. In this case the fibration of relations over E is constructed by change of

base. This means we form the following pullback in Cat.

Rel(E) //

��

E

p

��
B×B ×

// B

(2.4)

By general considerations (compare Section 1.5 of (Jacobs, 1999a)) it follows that the

functor

Rel(E)
↓

B×B obtained this way is a fibration again. For the results of this section one
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has to assume extra properties. For instance that B is bicartesian closed and distributive,
that the coproducts in B are distributive, that the fibres of E have bicartesian closed
structure (which is preserved by the substitution functors), that the Beck–Chevalley
and the Frobenius conditions hold, and so on. In fact most of the results of this section
have been obtained this way by (Hermida and Jacobs, 1998) and (Hensel, 1999) for an

arbitrary fibration
E
↓p
B

with additional properties. The proofs are quite technical and

require a nontrivial amount of fibred category theory.
For the treatment of binary methods I have to consider cofibredness in addition

to the properties that are discussed in (Hermida and Jacobs, 1998) and in (Hensel,
1999). The proof of Lemma 2.4.17 (establishing a restricted cofibredness property for
the bicartesian closed structure of the total category) for an arbitrary fibration requires
additionally that the Axiom of Choice holds in this fibration. So even when working in an
abstract setting, the results depend on quite strong assumptions. The greater difficulty
when working with an arbitrary fibration hardly justifies the small additional level of
generality that can be obtained.

In coalgebraic specification one is mainly interested in models in Set. In this thesis
I give a semantics in Set for the specification language ccsl (Chapter 4). Applications
of ccsl use currently a semantics in the higher-order logics of the theorem provers
pvs (see (Owre et al., 1996; Owre et al., 1995)) or isabelle/hol (see (Nipkow et al.,
2002b)). Both environments differ only very little from Set.

For these reasons it is more appropriate to use the two concrete fibrations of pred-
icates and relations over Set for the Chapter on binary methods in this thesis. Fibred
category theory will provide the appropriate language to express the relevant properties
of predicates and relations. Therefore this section introduces predicates and relations
as fibrations over Set and proves all the properties that are needed in Chapter 3. The
fibrations of predicates and relations are primary examples for fibred category theory,
so they are discussed in detail for instance in (Jacobs, 1999a) and (Hensel, 1999). Al-
most all results in this section are either folklore or appear somewhere in the literature,
sometimes in more general form. Only the question of cofibredness (Example 2.4.16 and
Propositions 2.4.17, page 46f) has, to the best of my knowledge, not been investigated
before.

All results of this section have been formalised and proved with pvs. The last sub-
section (starting on page 48) explains some aspects of the pvs formalisation. A detailed
explanation of the pvs material and a correspondence between the lemmas of this section
and the pvs formalisation is in Appendix A.

2.4.1. The Fibration of Predicates

The fibration of typed predicates arises as the subobject fibration of the category Set,
see Section 1.3 in (Jacobs, 1999a). Here I prefer to give a concrete definition.
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Definition 2.4.1 (Fibration of Predicates) The category of typed predicates is de-
noted by Pred. Its objects are pairs of sets, written as (P ⊆ X), such that P is a subset
of X. Morphisms in Pred are ordinary functions: A function f : X //Y is a morphism
f : (P ⊆ X) //(Q ⊆ Y ) in Pred if f x ∈ Q whenever x ∈ P . The identities in Pred are
the identity functions and composition in Pred is functional composition. The category
Pred is fibred over Set via the forgetful functor that sends a predicate (P ⊆ X) to its
carrier X and morphisms in Pred to the underlying functions.

For a predicate (P ⊆ X) I sometimes write P x instead of x ∈ P to denote that the
predicate holds for the individual x ∈ X. For the objects of Pred I use letters P,Q to

emphasise that they are predicates. The forgetful functor
Pred
↓U

Set
is a bifibration. For a

set X, the fibre over X contains all subsets of X. The vertical morphisms are inclusions.
Assume a function f : X //Y in the following. For a predicate (Q ⊆ Y ) the cartesian
morphism over f is f : ({x | f x ∈ Q} ⊆ X) //(Q ⊆ Y ). For a predicate (P ⊆ X) the
cocartesian morphism over f is f : (P ⊆ X) //({f x | x ∈ P} ⊆ Y ). The substitution
functor f∗ is given by f∗ (Q ⊆ Y ) = ({x | f x ∈ Q} ⊆ X). Note that you can consider
a morphism f : (P ⊆ X) //(Q ⊆ Y ) as a pair that consists of a function f : X //Y
and a proof of the sequent x : X | P x ` Q(f x).

Before I discuss the structure of the predicate fibration let me say something about
notation. Soon I will deal with three different bicartesian structures: The one in the
fibres of Pred, the one in the total category Pred, and the one in the base category
Set. The same will happen for Rel, the fibration of relations (see below, Definition 2.4.3
on page 38). So it is a good idea to use notation that distinguishes all the different
products, coproducts and exponents. For the bicartesian structure in Set I use the
usual symbols ×,+, and ⇒. For the total categories I annotate these symbols with the
subscript –P for Pred and –R for Rel. So for instance ×P is the cartesian product in
Pred. Because its very close relationship with the corresponding logical operation, I use
∧,∨, and ⊃ for the product, the coproduct, and the exponent (implication) in the fibres
of Pred and Rel.

The fibration
Pred
↓U

Set
has a very rich structure. Each fibre is bicartesian closed:

(P ⊆ X) ∧ (Q ⊆ X) = (P ∩Q ⊆ X) = ({x | P x and Qx} ⊆ X)
(P ⊆ X) ∨ (Q ⊆ X) = (P ∪Q ⊆ X) = ({x | P x or Qx} ⊆ X)
(P ⊆ X) ⊃ (Q ⊆ X) = ((X \ P ) ∪Q ⊆ X) = ({x | P x implies Qx} ⊆ X)

Moreover, this bicartesian structure is fibred, that is, it is preserved by the substitution
functors. The bicartesian structure on morphisms is trivial because the fibres of Pred
are preorder categories, that is, there is at most one vertical morphism between any two
objects in Pred. Again I invite those readers not familiar with category theory, to check
that the required properties hold.
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The product and the coproduct in the fibres can be generalised to arbitrary collec-
tions. Let I be an arbitrary index set and let (Pi ⊆ X)i∈I be an I–indexed collection of
predicates: ∧

i∈I (Pi ⊆ X) =
⋂

i∈IPi = ({x | ∀i ∈ I . Pi x} ⊆ X)∨
i∈I (Pi ⊆ X) =

⋃
i∈IPi = ({x | ∃i ∈ I . Pi x} ⊆ X)

Also these generalised products and coproducts are fibred, that is we have u∗ (
∧

i Pi) =∧
i (u

∗ Pi) and u∗ (
∨

i Pi) =
∨

i (u
∗ Pi).

In the fibration
Pred
↓U

Set
left and right adjoints exist to all substitution functors. I

denote them by
∐

f and
∏

f for a function f : X //Y . They are explicitly given by3

∐
f (P ⊆ X) =

(
{y | ∃x ∈ X . f x = y and x ∈ P} ⊆ Y

)∏
f (P ⊆ X) =

(
{y | ∀x ∈ X . f x = y implies x ∈ P} ⊆ Y

)
Remark 2.4.2 Let me stress the fact that we have now enough structure in

Pred
↓U

Set
to

use it as semantic universe for a simply typed predicate logic (compare Example 2.3.4).
Sequents of simply typed predicate logic have the form Γ ` ϕ where Γ is the variable
context of ϕ. Formulae are build up from atomic predicates (x : τ ` P x), logical
connectives (∧,∨, and ⊃) and quantification.

A semantics for this logic will assign a set JΓK to every context Γ and a predicate in the
fibre over JΓK to every formula Γ ` ϕ. Assume we are given a set JτK for each type τ . The
semantics for contexts is Jx1 : τ1, . . . , xn : τnK = Jτ1K×· · ·×JτnK. Assume further, we have
also a predicate (JP K ⊆ JτK) for each atomic proposition x : τ ` P x of the logic. Then
the bicartesian structure in the fibres gives a semantics to the boolean connectives. The

substitution functors of
Pred
↓U

Set
provide the desired semantics for syntactic substitution.

The more interesting question is how to deal with weakening and quantification.
Weakening adds a fresh variable to the context: If Γ ` ϕ is formula, then also Γ, x :

τ ` ϕ is a formula, provided x is not already contained in Γ. On the semantic side

we have a projection JΓK× JτK π //JΓK . The substitution functor π∗ sends predicates
over JΓK to predicates over JΓK × JτK. It behaves exactly in the expected way to give a
semantics to weakening.

Quantification is somehow inverse to weakening: If Γ, x : τ ` ϕ is a formula, then so
is Γ ` ∃x : τ . ϕ. In Example 2.3.4 I showed that existential and universal quantification
is (respectively) left and right adjoint to weakening. Therefore we get as semantics of
the quantifiers J∃x : τ . ϕK =

∐
π JϕK and J∀x : τ . ϕK =

∏
π JϕK.

3The operation
∐

f is well known as the image of f , sometimes denoted as f [−]. However, I prefer
the notation from fibred category theory. The same applies to f∗ , sometimes written as f−1(−).
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2. Categorical Preliminaries

There is also a bicartesian closed structure in the total category Pred. Assume two
predicates (P ⊆ X) and (Q ⊆ Y ), then

(P ×PQ ⊆ X × Y ) = (π∗1 P ) ∧ (π∗2 Q)

=
(
{(x, y) | P x and Qy} ⊆ X × Y

)
(P +PQ ⊆ X + Y ) = (

∐
κ1
P ) ∨ (

∐
κ2
Q)

=
(
{κ1 x | P x} ∪ {κ2 y | Qy} ⊆ X + Y

)
(P ⇒PQ ⊆ X ⇒ Y ) =

∏
π1

(
(π∗2 P ) ⊃ (evalX,Y

∗Q)
)

=
(
{f | ∀x ∈ X .P x implies Q(f x)} ⊆ X ⇒ Y

)
The fibred exponent ⊃ in the equation above is the one in the fibre over (X ⇒ Y )×X.

The projection functions are X ⇒ Y (X ⇒ Y )×X
π1oo π2 //X . The equations defining

the bicartesian closed structure in terms of the fibred structure are not a coincidence:
They follow from general properties of the category Set and the fibres of Pred, compare
(Hermida and Jacobs, 1998). On morphisms the bicartesian structure is inherited from
the base category, so f �P g = f � g for � ∈ {×,+,⇒} and suitable morphisms f and
g in Pred.

All fibres of Pred have both initial and final objects. For a set X the final object
in the fibre over X is the constantly true predicate >X = (X ⊆ X). The initial object
is the empty predicate ⊥X = (∅ ⊆ X). The final objects of the fibres define the truth
functor 1 : Set //Pred that assigns to every set X the truth predicate over it. For the

predicate fibration
Pred
↓U

Set
the functor U is left adjoint to 1.

The truth functor also has a right adjoint. Thereby the predicate fibration ad-
mits comprehension in the sense of (Lawvere, 1970). This right adjoint comprehension
1 a {−} is explicitly given by {(P ⊆ X)} = P .

2.4.2. The Fibration of Relations

Let me introduce the fibration of relations before I continue to discuss the properties of
the predicate fibration. Any relation can be regarded as a binary predicate. Therefore
the fibration of relations can be obtained by change of base, see Diagram 2.4 at the
beginning of this section. For illustration I give an explicit description.

Definition 2.4.3 (Fibration of Relations) The category of relations Rel has as ob-
jects triples, written as (R ⊆ X × Y ), such that R is a relation over X and Y . Instead
of xR y I often write R(x, y) to denote that R relates the two individuals x and y. Mor-
phisms in Rel are pairs of functions. The functions f : U //X and g : V //Y form
a morphism (f, g) : (S ⊆ U × V ) //(R ⊆ X × Y ) if for all u and v with uS v it holds
that (f u)R (g v). Identities and composition are given by the identities and (pairwise)
composition of functions in Set.
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2.4. Predicate Logic over Sets

The category Rel is fibred over Set × Set via the forgetful functor that sends a
relation (R ⊆ X × Y ) to the object (X,Y ) in Set× Set.

Remark 2.4.4 In (Jacobs, 1999a) and in (Hermida and Jacobs, 1998) the fibration of
relations is defined via the pullback

SRel(E) //

��

E

p

��
B

I
� // I×I

// B

If we instantiate
E
↓p
B

with the predicate fibration we get the category SRel(Pred) of

single carrier binary relations (R ⊆ X × X) (instead of (R ⊆ X × Y ) as in preceding
definition). Obviously, the category SRel(E) is a subcategory of Rel(E). If B is a
distributive category and if coproduct functors exist along the coproduct injections then
the inclusion functor SRel � � //Rel has both a left and a right adjoint (Hensel, 1999).
When defining bisimulations for coalgebras it is more natural to work in the category
Rel with relations on different carriers. On the other hand the notion of quotients makes
only sense for binary relations on one carrier.

It is obvious that the fibre of Rel over (X, Y ) (assuming arbitrary sets X and Y )
coincides with the fibre of Pred over X × Y . Similarly any morphism (f, g) in Rel is
a morphism f × g in Pred. So also Rel has fibred bicartesian structure. It is identical
with the structure in the corresponding fibres in Pred (this justifies the use of the same
notation). For convenience I repeat the definitions. Assume two relations R ⊆ X × Y
and S ⊆ X × Y , then

(R ⊆ X × Y ) ∧ (S ⊆ X × Y ) = (R ∩ S ⊆ X × Y )

= ({(x, y) | R(x, y) and S(x, y)} ⊆ X × Y )

(R ⊆ X × Y ) ∨ (S ⊆ X × Y ) = (R ∪ S ⊆ X × Y )

= ({(x, y) | R(x, y) or S(x, y)} ⊆ X × Y )

(R ⊆ X × Y ) ⊃ (S ⊆ X × Y ) = ((X × Y \R) ∪ S ⊆ X × Y )

= ({(x, y) | R(x, y) implies S(x, y)} ⊆ X × Y )

The product and the coproduct generalise to arbitrary collections. Let (Ri ⊆ X ×Y ) be
an arbitrary I–indexed collection of relations:∧

i∈I (Ri ⊆ X × Y ) =
⋂

i∈IRi

= ({(x, y) | ∀i ∈ I . Ri(x, y)} ⊆ X × Y )∨
i∈I (Ri ⊆ X × Y ) =

⋃
i∈IRi

= ({(x, y) | ∃i ∈ I . Ri(x, y)} ⊆ X × Y )
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The fibred bicartesian structure for morphisms is again trivial. The substitution,
coproduct and product functors are derived from the ones in Pred. Assume two functions
f : U //X and g : V //Y, and two relations S ⊆ U × V, and R ⊆ X × Y :

(f, g)∗ (R ⊆ X × Y ) = (f × g)∗ (R ⊆ X × Y )

=
(
{(u, v) | R(f u, g v)} ⊆ U × V

)
∐

(f,g) (S ⊆ U × V ) =
∐

f×g (S ⊆ U × V )

=
(
{(x, y) | ∃u ∈ U, v ∈ V . f u = x ∧

g v = y ∧ S(u, v)} ⊆ X × Y
)

∏
(f,g) (S ⊆ U × V ) =

∏
f×g (S ⊆ U × V )

=
(
{(x, y) | ∀u ∈ U, v ∈ V . f u = x ∧

g v = y implies S(x, y)} ⊆ X × Y
)

In the following, when working in Rel, I often silently switch to the corresponding fibres
in Pred and also use the notation from Pred. So I usually write (f × g)∗ instead of
(f, g)∗ . With the substitution functors it is clear, which morphisms in Rel are cartesian:
For the pair (f, g) and R from before, the cartesian morphism is (f, g) : (f × g)∗R //R .

Next I present the bicartesian closed structure of Rel. Assume now two relations
S ⊆ U × V and R ⊆ X × Y . The structure is given by

S×RR ⊆ (U ×X)× (V × Y )

= ((π1 × π1)
∗ S) ∧ ((π2 × π2)

∗R)

=
{(

(u, x), (v, y)
)
| S(u, v) and R(x, y)

}
S+RR ⊆ (U +X)× (V + Y )

= (
∐

κ1×κ1
S) ∨ (

∐
κ2×κ2

R)

=
{
(κ1 u, κ1 v) | S(u, v)

}
∪
{
(κ2 x, κ2 y) | R(x, y)

}
S⇒RR ⊆ (U ⇒ X)× (V ⇒ Y )

=
∏

π1×π1

(
(π2 × π2)

∗ S ⊃ (evalU,X × evalV,Y )∗R
)

=
{
(f, g) | ∀u ∈ U, v ∈ V . S(u, v) implies R(f u, g v)

}
The fibred implication ⊃ above is in the fibre over (U ⇒ X)×U × (V ⇒ Y )× V . The
product and substitution functors sit over the following diagram in the base.

X × Y

(U ⇒ X)× (V ⇒ Y ) (U ⇒ X)× U × (V ⇒ Y )× V
π1×π1oo

evalU,X×evalV,Y

33hhhhhhhhhhhhhhhhhhhhh
π2×π2 // U × V
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2.4. Predicate Logic over Sets

Again the structure on morphisms is (almost) inherited from the base category Set:
(u, v)�R(f, g) = ((u � f) × (v � g)) for � ∈ {×,+,⇒} and suitable functions u, v, f
and g.

The fibration of relations inherits the truth functor from
Pred
↓U

Set
and thereby also its

adjoint comprehension {−}. Moreover, the fibration of relations admits equality in the
sense of (Lawvere, 1970): Because the base category Set has binary products we can

form the composite functor Eq
def
=
∐

δ ◦ 1 : Set //Rel . Here
∐

δ is the coproduct along

the diagonal δ
def
= 〈idX , idX〉 : X //X ×X . It extends to a functor

∐
δ : Pred //Rel .

The composite Eq gives us (typed) equality: Eq(X) = ({(x, x) | x ∈ X} ⊆ X ×X). By
composition equality has a right adjoint Eq a {−} ◦ δ∗ .

Note that equality can be more precisely defined as functor Set //SRel . In this
case quotients arise as left adjoint to equality (Jacobs, 1999a). Because the inclusion
SRel � � //Rel has a left adjoint, also equality when considered as a functor Set //Rel
has a left adjoint. This left adjoint takes a relation R ⊆ X×Y, turns it into an equivalence
relation R̂ on X + Y and yields the quotient (X + Y )/R̂.

Swapping all pairs in a relation R ⊆ X × Y yields the opposite relation Rop. More
formally:

Rop ⊆ Y ×X = 〈π2, π1〉∗R =
(
{(y, x) | xR y} ⊆ Y ×X

)
As last example of what can be captured fibrationally I define the composition of two
relations in Rel. Assume two relations S ⊆ U ×X and R ⊆ X × Y .

S ◦ R ⊆ U × Y =
∐

π2
(π∗1 S ∧ π∗3 R)

=
(
{(u, y) | ∃x : X .S(u, x) and R(x, y)} ⊆ U × Y

)
This construction takes place over the following diagram in the base.

U ×X U ×X × Y
π1oo π3 //

π2

��

X × Y

U × Y

2.4.3. Properties of Predicates and Relations

The remainder of this section presents technical results about the fibrations of predicates
and that of relations. Some of them are very trivial. I state them nevertheless, because
I refer to these results in Section 2.6 and in Chapter 3. Most of the following results
have been obtained by (Hermida and Jacobs, 1998) and (Hensel and Jacobs, 1997) on
a more abstract level. As I noted before, this whole section has been formalised within
pvs. This applies especially to all lemmas of this subsection. They have all been proved
within pvs. For details see the next subsection (starting on page 48).
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2. Categorical Preliminaries

The following is an immediate consequence of the fact that the bicartesian operations
both on Pred and on Rel are functors and thus preserve entailment.

Lemma 2.4.5 (Monotonicity)

1. Assume four predicates P1, P2 ⊆ X and Q1, Q2 ⊆ Y . Then P1 ⊆ P2 and Q1 ⊆ Q2

implies

P1×PQ1 ⊆ P2×PQ2

P1 +PQ1 ⊆ P2 +PQ2

P2⇒PQ1 ⊆ P1⇒PQ2

2. Assume four relations S1, S2 ⊆ U × V and R1, R2 ⊆ X × Y . Then S1 ⊆ S2 and
R1 ⊆ R2 implies

S1×RR1 ⊆ S2×RR2

S1 +RR1 ⊆ S2 +RR2

S2⇒RR1 ⊆ S1⇒RR2 �

Note that both exponents are anti–monotone in their contravariant position.

Lemma 2.4.6 (Beck–Chevalley and Frobenius)

1. The Beck–Chevalley condition holds in both fibrations
Pred
↓U

Set
and

Rel
↓U

Set×Set
for all

pullback diagrams in Set and Set× Set, respectively.

2. The Frobenius condition holds in both fibrations for left adjoints to substitution
functors. That is, for the predicate fibration Frobenius holds for all

∐
f a f∗ and

for the fibration of relation it holds for all
∐

f×g a (f × g)∗ .

Proof This lemma has been proved in pvs. The parts for the fibration of relations
follow trivially from the corresponding properties of the predicate fibration. For the
latter assume a pullback square

X
u //

v

��

A

g

��
B

f // C

Then for Item (1) we have to prove the following equation for a predicate (P ⊆ B).∐
u v
∗ P = g∗

∐
f P

For an additional predicate (Q ⊆ C) Item (2) corresponds to∐
f (P ∧ f∗Q) = (

∐
f P ) ∧Q

Both equations are easy computations. �
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2.4. Predicate Logic over Sets

In the next lemma about the truth functor, the first two equation follow from the
fact that truth is both a left and a right adjoint.

Lemma 2.4.7 (Truth) For arbitrary sets X and Y

>X ×P>Y = >X×Y

>X +P>Y = >X+Y

>X ⇒P>Y = >X⇒Y

Proof Immediate from the definition. �

Lemma 2.4.8 (Equality) For arbitrary sets X and Y

Eq(X)×R Eq(Y ) = Eq(X × Y )

Eq(X) +R Eq(Y ) = Eq(X + Y )

Eq(X)⇒R Eq(Y ) = Eq(X ⇒ Y )

Proof Straightforward. �

Lemma 2.4.9 (Conjunction) Let A be a set and I be an arbitrary index set.

1. Assume collections (Pi ⊆ X)i∈I and (Qi ⊆ Y )i∈I of predicates. Then∧
i (Pi×PQi) =

∧
i Pi ×P

∧
iQi∧

i (Pi +PQi) =
∧

i Pi +P

∧
iQi∧

i (>A⇒PQi) = >A ⇒P

∧
iQi∧

i (Pi⇒PQi) ⊆
∧

i Pi ⇒P

∧
iQi

2. Assume now collections (Si ⊆ U × V )i∈I and (Ri ⊆ X × Y )i∈I of relations.∧
i (Si×RRi) =

∧
i Si ×R

∧
iRi∧

i (Eq(A)⇒RRi) = Eq(A) ⇒R

∧
iRi∧

i (Si⇒RRi) ⊆
∧

i Si ⇒R

∧
iRi

And under the assumption that I is nonempty∧
i (Si +RRi) =

∧
i Si +R

∧
iRi

The subset relation for the general exponent above, is the best result one can achieve.
It is very easy to find examples where the subset relation is strict.

Proof Straightforward after unpacking the definitions. �
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Lemma 2.4.10 (Disjunction) Let A be a set and I an arbitrary index set as before.

1. Assume collections of predicates (Pi ⊆ X)i∈I and (Qi ⊆ Y )i∈I .∨
i (Pi×PQi) ⊆

∨
i Pi ×P

∨
iQi∨

i (Pi +PQi) =
∨

i Pi +P

∨
iQi∨

i (>A⇒PQi) ⊆ >A ⇒P

∨
iQi

2. Assume as before collections of relations (Si ⊆ U × V )i∈I and (Ri ⊆ X × Y )i∈I .∨
i (Si×RRi) ⊆

∨
i Si ×R

∨
iRi∨

i (Si +RRi) =
∨

i Si +R

∨
iRi∨

i (Eq(A)⇒RRi) ⊆ Eq(A) ⇒R

∨
iR1

Again the subset relations in the preceding lemma are the best results that can
be achieved in general. The preceding lemma does not contain a statement about the
general exponent. The two expressions in question

∨
i (Pi⇒PQi) and

∨
i Pi ⇒P

∨
iQi(∨

i (Ri⇒R Si) and
∨

iRi ⇒R

∨
i Si for relations

)
are not related at all.

Proof Straightforward after unpacking the definitions. �

Lemma 2.4.11 (Opposite Relation) For arbitrary relations S ⊆ U×V, R ⊆ X×Y :

(S×RR)op = Sop×RR
op

(S+RR)op = Sop +RR
op

(S⇒RR)op = Sop⇒RR
op

Proof Immediate. �

Lemma 2.4.12 (Composition) Assume four relations S1 ⊆ U×V, S2 ⊆ V ×W, R1 ⊆
X × Y, R2 ⊆ Y × Z and a set A:

(S1×RR1) ◦ (S2×RR2) = (S1 ◦ S2) ×R (R1 ◦ R2)

(S1 +RR1) ◦ (S2 +RR2) = (S1 ◦ S2) +R (R1 ◦ R2)

(Eq(A)⇒RR1) ◦ (Eq(A)⇒RR2) = Eq(A) ⇒R (R1 ◦ R2)

(S1⇒RR1) ◦ (S2⇒RR2) ⊆ (S1 ◦ S2) ⇒R (R1 ◦ R2)

Proof Straightforward after unpacking the definitions. The third equation requires the
Axiom of Choice. �

There exist examples of relations such that the subset relation in the preceding lemma
is strict. The following two lemmas relate the cartesian structure of Pred and Rel. I
need them for the Propositions 2.6.15 and 2.6.17 on page 65f.
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Lemma 2.4.13 Assume two relations S ⊆ U × V and R ⊆ X × Y and let A be a set.∐
π1

(S ×R R) = (
∐

π1
S) ×P (

∐
π1
R)∐

π1
(S +R R) = (

∐
π1
S) +P (

∐
π1
R)∐

π1
(Eq(A) ⇒R R) = >A ⇒P (

∐
π1
R)∐

π1
(S ⇒R R) ⊆ (

∐
π1
S) ⇒P (

∐
π1
R)

It is easy to find an example with
∐

π1
(S ⇒R R) 6⊇ (

∐
π1
S) ⇒P (

∐
π1
R).

Proof Unfold the definitions. The third equation requires the Axiom of Choice. �

Lemma 2.4.14 Let A,U, V,X, and Y be sets. To avoid confusion denote the first pro-
jections as follows

X × Y
π1 // X

U × V
π2 // U

(U ×X)× (V × Y )
π3 // U ×X

(A⇒ X)× (A⇒ Y )
π4 // A⇒ X

(U ⇒ X)× (V ⇒ Y )
π5 // U ⇒ X

(U +X)× (V + Y )
π6 // U +X

Let P ⊆ X and Q ⊆ U be predicates, then

π∗3 (Q ×P P ) = (π∗2 Q) ×R (π∗1 P )

π∗4 (>A ⇒P P ) = Eq(A) ⇒R (π∗1 P )

π∗5 (Q ⇒P P ) ⊆ (π∗2 Q) ⇒R (π∗1 P )

For the coproduct assume additionally two relations R ⊆ X × Y and S ⊆ U × V

(S+RR) ∧ π∗6 (Q +P P ) = (S+RR) ∧ (π∗2 Q) +R (π∗1 P )

Under the assumption that V is nonempty:

π∗5 (Q ⇒P P ) = (π∗2 Q) ⇒R (π∗1 P )

Proof By unfolding the definitions. �

Next I consider fibredness and cofibredness of the bicartesian structure of Pred and
Rel over their counterparts in Set. The next result is well known and can be found, for
instance in (Hensel, 1999).

Lemma 2.4.15 (Fibredness)

1. The product, coproduct, and the exponent of Pred are fibred over the corresponding
structure in Set.
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2. The same applies to the product, coproduct, and the exponent of Rel.

Proof This Lemma has also been proved completely in pvs. For illustration I show
that the exponent in Rel is fibred. We have to establish that for arbitrary relations
(S ⊆ U × V ) and (R ⊆ X × Y ) and functions u : U //U ′ , v : V //V ′ , f : X ′ //X,
and g : Y ′ //Y it holds that(∐

(u×v) S
)
⇒R

(
(f × g)∗R

)
= ((u⇒ f)× (v ⇒ g))∗ (S⇒RR)

(compare Section 2.3, pages 31ff.) This is done by(∐
(u×v) S

)
⇒R

(
(f × g)∗R

)
⊆ (U ′ ⇒ X ′)× (V ′ ⇒ Y ′)

=
{
(a, b) | ∀p′ : U ′, q′ : V ′ .(

∃p : U, q : V . p′ = u(p) and q′ = v(q) and S(p, q)
)

implies R( f(a(p′)), g(b(q′)) )
}

=
{
(a, b) | ∀p : U, q : V . S(p, q) implies R

(
f(a(u(p))), g(b(v(q)))

)}
= ((u⇒ f)× (v ⇒ g))∗ (S⇒RR) �

It is a new observation, that the bicartesian structure of both Pred and Rel is not
cofibred. Although product and coproduct are cofibred, for the exponent cofibredness
fails.

Example 2.4.16 I show an example in which the cofibredness condition for the ex-
ponent in Pred fails. That is, I construct predicates P ⊆ X, Q ⊆ Y and functions
f : U //X and g : Y //V such that in the fibre over U ⇒ V

(f∗ P ) ⇒P (
∐

g Q) �
∐

f⇒g (P ⇒PQ) (∗)

Take as four concrete sets

U
def
= {u0, u1} V

def
= {v0, v1}

X
def
= {x0, x1} Y

def
= {y0, y1}

Let P
def
= {x0} and Q

def
= {y0} be the predicates over X and Y respectively. Define the

functions
f : U //X

def
= λu : U . if u = uo then x0 else x1 endif

g : Y //V
def
= λy : Y . v1

There are exactly four functions U //V , namely

h1
def
= λu : U . v0 h3

def
= λu : U . if u = u0 then v0 else v1 endif

h2
def
= λu : U . v1 h4

def
= λu : U . if u = u0 then v1 else v0 endif
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Computing now both sides of (∗) yields

(f∗ P ) ⇒P (
∐

g Q) = {h2, h4} � {h2} =
∐

f⇒g (P ⇒PQ) �

The preceding example shows that in general the exponent is not cofibred in Pred.
However, cofibredness holds in the restricted case of constant arguments. This allows me
to derive a cofibredness results for polynomial functors (in Lemma 3.4.4 on page 95 and
Lemma 3.4.7 on page 98 below).

Lemma 2.4.17 (Cofibredness)

1. The product and the coproduct both of Pred and Rel are cofibred over the corre-
sponding structure in Set.

2. Let A be an arbitrary set, (P ⊆ X) be a predicate and f a function X //X ′ . Then
for the exponent in Pred it holds that

>A ⇒P

∐
f P =

∐
idA⇒f (>A⇒P P )

3. Let A again be a set and assume further a relation R ⊆ X × Y and two functions
f : X //X ′ and g : Y //Y ′ . Then

Eq(A) ⇒R

∐
f×g R =

∐
(idA⇒f)×(idA⇒g)

(
Eq(A)⇒RR

)
Proof This Lemma has been proved completely in pvs. Item (3) is the most difficult
part. I show its proof here. For the left hand side I compute

Eq(A)⇒R

∐
f×g R ⊆ (A⇒ X ′)× (A⇒ Y ′)

=
{
(h′, k′) | ∀a : A .∃x : X, y : Y .R(x, y) and

h′(a) = f(x) and k′(a) = g(y)
}

(∗)

And for the right hand side∐
(idA⇒f)×(idA⇒g)

(
Eq(A)⇒RR

)
=

{
(h′, k′) | ∃h : A //X, k : A //Y .

∀a : A .R(h(a), k(a)) and h′ = f ◦ h and k′ = g ◦ k
}

(†)

There is an obvious inclusion from (†) to (∗). For the other direction it is necessary to
construct suitable functions h and k using the Axiom of Choice. �
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2.4.4. PVS Formalisation

As already mentioned before all lemmas and examples of the preceding subsection have
been formalised and proved in pvs. This applies also to some more material from Chap-
ter 3 (including all examples). The pvs sources are available at URL http://wwwtcs.inf.tu-
dresden.de/∼tews/PhD/. They have been developed and checked with pvs version 2.4
patch level 1.

A similar formalisation of concepts of fibred category theory has also been done by
Hensel. In Chapter 3 of (Hensel, 1999) he proves that the logic of pvs fulfils the as-
sumptions of his main theorem about the validity of the induction and the coinduction
principle. In particular he shows that pvs admits comprehension and quotients. In com-
parison with my formalisation the main difference is a conceptual one: While Hensel
uses pvs as an example of a general theory, I use pvs to prove (to that extend that
is feasible) the main results of Chapter 3. So for me pvs is a tool that helped in the
development and in the validation of my main results about different generalisations of
polynomial functors.

Despite of this conceptual difference the setup of both formalisation is very much the
same. Therefore I only sketch here the main ideas of my formalisation. The Appendix A
illustrates my formalisation of the fibrations of predicates and relations with some ex-
cerpts from the pvs source code. The appendix also contains a table that relates the
lemmas and propositions of this thesis with pvs statements in the formalisation. A more
detailed description is on the world wide web at the URL given above.

pvs implements a simply typed higher-order logic with predicate subtypes, dependent
types, and a few other extensions. The pvs sources are organised in theories. Theories
can have type parameters and value parameters. The type parameters add a form of
polymorphism to the logic of pvs. The value parameters give an additional level of
dependent typing.

The main idea of the formalisation is the following: The pvs universe of types forms
the collection of objects of a base category Bpvs. The set of functions between two
types gives the morphisms between two objects. Statements and constructions that are
parametric in n objects are placed in a theory with n different type parameters. For
instance the construction of the product f × g of two morphisms is parametric in four
objects (domains and codomains of both f and g) so it is placed into a theory with four
type parameters. This way the construction and the statements that are proved in pvs
apply to all possible instantiations, hence to all objects of Bpvs.

The total categories Pred and Rel are formalised as a collection of fibres overBpvs. A
fibre over an object X (respectively X×Y for Rel) is modelled by the type of predicates
over X (respectively X × Y ). In higher-order logic the type of predicates over a type τ
is conveniently modelled with the function type τ ⇒ bool. This way constructions in the
total category map quite naturally to manipulations of predicates in pvs. For instance
the substitution functor (−)∗ is a construction that is parametric in two objects (the
domain and the codomain of the morphism in the base). Therefore it is placed in a pvs
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theory with two type parameters, say X and Y . For two fixed objects the substitution
functor is a functional (i.e., a function on function spaces) that maps a function X //Y
and a function Y //bool (the predicate over Y ) to a function X //bool (a predicate
over X).

This approach of formalising the fibrations of predicates and relations in pvs has the
advantage that the mapping of abstract categorical properties into the logic of pvs is
rather straightforward. For instance the exponent of objects is mapped to the built-in
function type. The resulting proof obligations are such that the strategies and decision
procedures that are built-in into pvs work very efficiently. Many theorems can be proved
with grind, the most powerful proof strategy of pvs. The disadvantage of mapping objects
directly to types is that one cannot represent functors in the formalisation, because pvs
does not support mappings from types to types.

Any particular functor can be represented as a type expressions in a parametrised
theory. The theory parameters play then the role of the arguments of the functor. (This
idea can be traced back to (Hensel et al., 1998).) However one cannot formalise a state-
ment about a set (or a class) of functors, because this would require quantification over
parametric type expressions, which is not available in pvs.

The main theorems of Chapter 3 involve a quantification over a class of functors,
for instance over the class of extended polynomial functors introduced in Section 3.4.
The different generalisations of polynomial functors that are of interest in the present
thesis are all finitely generated by the bicartesian structure of the base category. Many
theorems about these functors are proved by induction on their structure. The induction
steps look typically like: Assume that a property P holds for both functors F1 and F2,
show that P holds also for the functor F (X) = F1(X)×F2(X). Because the bicartesian
structure is formalised in pvs, the induction step can be mimicked in pvs in the following
way: Assume that the type parameters T1 and T2 both have a property P , show that
the property holds also for the product type T1 × T2.

So the bottom line is the following: The main theorems of Chapter 3 have not been
formalised in pvs. However, for those theorems that are proved by induction on the
structure of the involved functor, all induction steps have been formalised and proved
in pvs.

An alternative approach would be to axiomatise a bicartesian closed category as
a structure over two types, one for the objects and one for the morphisms. Then, a
functor could be represented as a pair of functions. However, I suspect that, under
this approach, the translation from abstract properties into pvs would be much more
complicated. Also the built-in decision procedures of pvs would not work that well and
proofs would be more complicated. Another drawback is that all proofs would depend
on the consistency of the axiomatisation, which could not be established within pvs. In
contrast, my approach does not use any axioms.

The size of my formalisation of the fibrations of predicates and relations is consider-
able. It contains about 800 statements (theorems) in the logic of pvs. They are spread
over more than 200KB pvs source code in 37 files. The proof scripts (that allow one to
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rerun and to check all the proves) contain altogether more than 10.000 proof commands.
I chose pvs for the formalisation because at that time pvs was the only theorem prover I
was acquainted with. My experience with pvs is mixed: On the one hand recent versions
of pvs work quite efficient on such large specifications. One can easily change or add
declarations and theorems, pvs keeps track of what has to get invalidated. Another im-
pressive feature of pvs are the decision procedures. Often the high-level proof strategies
of pvs were able to prove a theorem, without that I actually understood the details of
the proof. In order to understand them I proved some theorems a second time using only
simple proof commands.

On the other hand, considered as a software system, pvs has considerable quality
problems. While working on the formalisation I submitted more than 40 bug reports, see
http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/ (so on average every 200 lines of source
code triggered a bug). The Fiasco case study that is described in Section 4.10 (on
page 235) was originally done with pvs version 2.2. Since then, more than three years
later, version 2.3 and 2.4 (and several patches) have been released. However, all of these
successor versions contain a bug4 that makes it impossible to port the case study to any
of the newer versions.

(For a comparison of pvs and isabelle/hol see (Griffioen and Huisman, 1998) and
Section 8.2 in (Huisman, 2001).)

2.5. Algebras

The main emphasis of this thesis is on coalgebras and on coalgebraic specification. Alge-
bras are included here mainly for two reasons. First, it might be easier for the uninitiated
reader to understand coalgebras in contrast to algebras. Second, the specification lan-
guage ccsl (described in Chapter 4) allows the user to specify algebras. So to make this
thesis self contained algebras are formally defined in this section. To make the duality
between algebras and coalgebras more obvious (and therefore to make it easier to under-
stand the following section on coalgebras) I use the categorical definition for algebras.
Algebras and algebraic specification is treated in detail in (Wirsing, 1990).

Algebras are widely accepted as the right formalism to specify finitely generated
data structures such as lists or trees. I take the data type List[A] of finite list over A as
the running example of this section. Two operations suffice to generate all elements of
List[A]. The first operation is nil : 1 //List[A] , the empty list. The second operation is
cons : A× List[A] //List[A] . Additional operations like concatenation or reversal of lists
can be defined by induction (or primitive recursion), so I leave them aside for a while.

Both operations nil and cons have as codomain the type List[A] that I am about to
define. This is a fundamental observation: An algebraic signature consists of (a finite set

4See problem report #516 in the pvs bug tracking system.
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of) operations of the form

· · · Carrier · · · // Carrier (∗)

Operations of this form are called constructors or algebras. They describe the primitive
operations that are available to build elements of Carrier, the carrier set of the new data
type.

All constructors in a signature can be combined into one algebra using the coproduct.
In the list example the two constructors nil and cons are equivalent to one algebra
αList : 1 + (A× List[A]) //List[A] . From the combined list algebra αList one gets the
operations nil and cons by precomposing injections, for instance αList ◦ κ0 = nil. Observe
that all information of the signature is contained in the domain type of the combined
algebra. Thus one can describe the signature of a data type by an endofunctor that maps
the carrier set to the domain of the algebra.

For a formal definition of the term algebra consider an arbitrary category C and an
endofunctor T : C //C . A T–algebra is a morphism T (X) //X in C. The functor T
plays the role of signatures in traditional universal algebra. The categorical definition of
algebra is more general. It applies to arbitrary categories and not just to Set. Further
even on the category Set, the notion of an endofunctor is more general than that of a
(single sorted) algebraic signature.

The functor that describes the list signature is TList(X) = 1+A×X, where A is the
set of possible elements of the list. In the category Set there are a lot of sets M that
allow one to define a list algebra (i.e., a function TList(M) //M ). Most of them have
nothing in common with finite lists over A. Therefore we need some means to restrict
our attention to the interesting list algebras. This can be done in two different ways,
either internally by stating properties about the set M , or externally by relating M to
other list algebras.

For an internal characterisation we state that List[A] is the carrier set of a list algebra
with the following two properties: First, all elements of List[A] can be finitely constructed
by using only the list algebra αList, that is, with the two operations nil and cons. Second,
any two such finite constructions yield different elements in List[A]. It is easy to see that
any list algebra that fulfils both points is isomorphic to the set of finite list over A.

For the external characterisation we need the notion of a structure preserving map,
often called List homomorphism, or in categorical terms List algebra morphism. As-
sume we have two list algebras, that is, two sets M and N with associated operations
nilM , consM , nilN , and consN . A function f : M //N is a list algebra homomorphism if
we have both that nilN = f(nilM) and consN(a, f(m)) = f(consM(a,m)) for all m ∈ M .
The external characterisation is now as follows: The set List[A] is the carrier set of a
list algebra αList for which there is precisely one list algebra homomorphism to any list
algebra.

Both the internal and the external characterisation are equivalent for arbitrary alge-
braic signatures. In this thesis I prefer to work with the external characterisation because
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it can be expressed categorically as follows.

An arrow f : X //Y of C is a T–algebra morphism between two T–algebras α :
T (X) //X and β : T (Y ) //Y if the following diagram commutes.

T (X) α //

T (f)

��

X

f

��
T (Y )

β // Y

(2.5)

For a given endofunctor T , the T–algebras and their morphisms form a category, denoted
by Alg(T ). The identities in Alg(T ) are identity functions and the composition of two
T–algebra morphisms is given by the composition of the underlying functions. The initial
T–algebra is the initial object in Alg(T ). If the initial algebra for a functor exists, then
it is an isomorphism.

In algebraic specification one considers algebraic signatures together with a set of
axioms that describe additional properties of the constructors. In this thesis I would like
to restrict the attention to abstract data type specification, that is algebraic specifica-
tions without Axioms. I use the term abstract data type to refer to structures that are
constructed as initial algebra.

Algebraic specification is a powerful technique. It allows one to define new abstract
data types up to isomorphism without referring to any internal representation. Further
the induction principle holds for abstract data types. The induction principle can be
exploited in two different ways: First to define functions via primitive recursion and
second to prove properties for all elements of an abstract data type. Let me demonstrate
how induction as definition and as proof principle is connected to initiality.

Assume we want to define the length function List[A] //N inductively. All we have
to do for that is to define an appropriate List algebra structure on N. For the length
function it is given by

nillength : 1 //N

= 0

conslength : A×N //N

= λa : A, n : N . n+ 1

The initiality of the abstract data type of lists provides us with a List–algebra morphism
length : List[A] //N . The commutation property of Diagram 2.5 amounts for the algebra
morphism length to the following two familiar equations.

length(nil) = 0

length(cons(a, l)) = length(l) + 1
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In set theory the induction proof principle comes out of the fact that the initial
algebra has no proper subalgebras. A formulation of induction in terms of fibrations has
the advantage, that it makes induction available in the syntactic language of a logic.
The general theory stems from (Hermida and Jacobs, 1998), here I show how this works

in case of the predicate fibration
Pred
↓

Set
.

Consider the functor Pred(TList) : PredX
//PredTList(X) between the fibres of Pred

defined as

Pred(TList)(P ⊆ X) = >1 +P (>A×P P )

(The functor Pred(TList) is called the predicate lifting of TList, it will be defined sys-
tematically in Definition 2.6.3 in the next section.) Algebras for the functor Pred(TList)
are morphisms (Pred(TList)(P ) ⊆ TList(X)) //(P ⊆ X) in Pred that consist of a TList–
algebra on X together with two implications > ⊃ P (nilX) and P (x) ⊃ P (consX(a, x)).
Hermida and Jacobs prove in (Hermida and Jacobs, 1998) that there is a functor
Alg(TList) //Alg(Pred(TList)) that preserves initial objects and sends the initial TList–
algebra to an algebra in Pred with carrier (>List[A] ⊆ List[A]). This shows that the induc-

tion proof principle for lists is valid in
Pred
↓U

Set
: Assume we have a predicate (P ⊆ List[A])

and can prove the two implications > ⊃ P (nil) and P (x) ⊃ P (cons(a, x)). This means
we have a Pred(TList) algebra with carrier (P ⊆ List[A]) in Pred. Because the Pred(TList)
algebra on >List[A] is initial we have also a (vertical) morphism >List[A]

//P . This last
morphism corresponds to a proof that P holds for all lists.

2.6. Coalgebras

In this section I introduce coalgebras and explain how coalgebras can be used to describe
processes or classes of object-oriented programming languages. Coalgebras and coalge-
braic specification are in the centre of this thesis. Chapter 3 proposes an extension of
the classical notion of coalgebras that makes it possible to model classes with methods
of arbitrary types, including binary methods. To judge the results obtained there it is
necessary to have an overview about the properties of the classical notion of coalge-
bra. This section will therefore review many known results about coalgebras. They have
been taken from (Rutten, 2000; Jacobs, 1997b), but see also (Gumm, 1999). A general
introduction into coalgebras and the related notions of coinduction and bisimulation
is (Jacobs and Rutten, 1997).

With few exceptions all the results of this section are proved for a more general notion
of coalgebra in Chapter 3. Therefore the proofs in this section have mainly informative
character.

Algebras are good for describing constructions, where the user wants to reason about
the internal structure. Coalgebras are good for describing observations where the internal
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structure is hidden. Consider the set of possibly infinite sequences Seq[A] of elements
from A. It comes together with the following operation:

next : Seq[A] // (A× Seq[A]) + 1 (∗)

(Recall that in Set we have 1 = {∗} and that the coproduct is given by the disjoint
union.) If we have a sequence s ∈ Seq[A] then either next(s) = ⊥ = κ2∗ or next(s) =
κ1(a, s

′) for some a and s′. The first case means that s is empty and contains no more
elements. The second case means that the first element of s is a and s′ is the sequence
that contains the remaining elements.

Note that next has a structured codomain, so it does not fit into an algebraic signa-
ture. A function of this shape

Self // · · · Self · · ·

is called a coalgebra. The set Self is the state space of the coalgebra (sometimes also
called the carrier set). Note that with a coalgebra one can only make observations, one
cannot inspect the internal structure of an element of the state space. Note also, that
the next in (∗) can be seen as a partial function. It fails for those sequences that are
empty.

Two coalgebras on the same carrier can be combined into one. If c1 and c2 are
coalgebras on the carrier X then their pairing 〈c1, c2〉 is also a coalgebra on X. One
obtains the original coalgebras by postcomposing a projection, for instance π1 ◦ 〈c1, c2〉 =
c1. So in theoretical investigations it is enough to consider just one coalgebra.

The structured codomain of the coalgebra, depicted as · · · Self · · · above,
corresponds to a (coalgebraic) signature. It describes possible observations that can be
made about an element x ∈ Self with one application of the coalgebra and how to obtain
successor states. Informally I call this the interface type of the coalgebra. Formally the
interface type is described by a functor. In the sequence example the interface type is
given by the functor TSeq(X) = (A×X)+1. For a sequence s the following observations
are possible: Either next s = κ1(· · · ) or next s = κ2∗. In the first case we can destruct
the result further and obtain (via the first projection) an additional observation in A
and (via the second projection) a successor state.

The observable behaviour of x ∈ Self is the tree of observations that results from
the application of the coalgebra to x and successively to all its successor states. The
observable behaviour of an element s ∈ Seq[A] is a finite or infinite sequence in A (which
should not come as a surprise now).

Coalgebras and their use in specification are the subject of this thesis. Let me give
two possible interpretations for a coalgebra α : X //T (X) of interface type T (X). First,
you can think of X as a set of possible states of an automaton.The interface type T (X)
gives the number and the type of the observations that are possible on these automata.
The coalgebra α corresponds to a transition function that, for a given state x ∈ X,
delivers all possible observations for x and all possible successor states of x at once.
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A second analogy that gives significance to coalgebras is that of object-oriented
programming. A class interface (i.e., the number and type of the methods and instance
variables) gives rise to a functor T . A coalgebra X //T (X) corresponds then to a class,
that is, to a fixed implementation of all the methods. The set X is the set of all possible
(states of) objects of that class. Important phenomena of object-oriented programming
like inheritance, aggregation through components, and dynamic binding can be modelled
with coalgebras, see (Jacobs, 1996b; Hensel et al., 1998). It is this second analogy, that
motivates the present thesis.

Definition 2.6.1 (Category of Coalgebras) Let T : C //C be an endofunctor on
a category C.

• A T–coalgebra is a morphism X //T (X) in C.

• A T–coalgebra morphism between two T–coalgebras α : X //T (X) and β :
Y //T (Y ) is a morphism f : X //Y in C such that the following diagram
commutes.

X
α //

f

��

T (X)

T (f)

��
Y

β // T (Y )

(2.6)

• Identity morphisms are the identities from C. The composition of two T–coalgebra
morphisms is their composition in C.

This forms, for any endofunctor T , the category CoAlg(T ) of T–coalgebras.

In the sequence example coalgebra morphisms are as follows. Let α : X //TSeq(X)
and β : Y //TSeq(Y ) be two sequence coalgebras. A function f : X //Y is a sequence
coalgebra morphism (i.e., a structure preserving map between sequences) if the following
holds for all x ∈ X

β(f(x)) =

{
κ1(a, f(x′)) if α(x) = κ1(a, x

′)
κ2∗ if α(x) = κ2∗

Note that in case f is a sequence morphism, both x and f(x) generate the same observ-
able behaviour.

If T is an endofunctor on Set one says that a coalgebra d : Y //T (Y ) is a sub-
coalgebra of c : X //T (X) if Y ⊆ X and if the inclusion ι : Y � � //X is a coalgebra

morphism d
ι //c .

For natural transformations there is the following result.

Proposition 2.6.2 A natural transformation η : T +3F between two endofunctors
gives rise to a functor CoAlg(T ) //CoAlg(F ). Its object part maps a T–coalgebra
c : X //T (X) to ηX ◦ c : X //F (X). Its morphism part is the identity.
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Proof The main proof obligation is to show that T -coalgebra morphisms are mapped
to F coalgebra morphisms. This is proved by the following diagram:

X

f

��

X

f

��

c // T (X)

T (f)
��

ηX // F (X)

F (f)
��

Y Y
d // T (Y )

ηY // F (Y ) �

2.6.1. Polynomial Functors

Functors play the role of signatures in that they describe what observations are possible
on a given coalgebra. Similar to restricting the types that may occur in a signature one
restricts the class of functors that are considered. The simplest class considered in the
present thesis are the polynomial functors.

Assume a bicartesian closed category C. An endofunctor C //C is called a polyno-
mial functor if it is defined as one of the following cases

F (X) =


X
A
F1(X)× F2(X)
F1(X) + F2(X)
A⇒ F1(X)

where A is an arbitrary (constant) object of C and F1 and F2 are previously defined
polynomial functors. The morphism part is defined in the obvious way:

F (f) =


f
idA

F1(f)× F2(f)
F1(f) + F2(f)
idA ⇒ F1(f)

if F (X) =


X
A
F1(X)× F2(X)
F1(X) + F2(X)
A⇒ F1(X)

There are small but subtle differences in the use of the term polynomial functor in the
literature. The present definition coincides with (Jacobs, 1997b) and (Rutten, 2000).
Both (Hermida and Jacobs, 1998) and (Poll and Zwanenburg, 2001) do not allow the
constant exponent A⇒ F1(X) in their notion of polynomial functor.

Polynomial functors can model many types of observations that occur in practice.
However there are the following restrictions: First, with polynomial functors one cannot
model observations in an abstract data type. The function

Self // List[A× Self] (†)

cannot be transformed into a coalgebra for a polynomial functor. In his thesis (Hensel,
1999) defines the class of data functors and investigates their properties. Data functors
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allow the iterated use of least and greatest fixed-point constructions, so the interface
type in (†) can be modelled by a data functor.

Second, polynomial functors cannot model nondeterminism. To overcome this restric-
tion many papers allow the finite powerset construction in the interface functors, see for
instance (Rutten, 2000; Jacobs, 1996b; Jacobs, 2000; Gumm, 1999). I do not consider
the finite powerset functor in this thesis.

Third, the exponent is allowed in polynomial functors, but only if its domain is a
constant. Consider a function

Self × A // (Self ×B) + 1

it can be considered as a coalgebra, because after currying it is equivalent to

Self // A⇒
(
(Self ×B) + 1

)
Consider now

Self × Self // (Self ×B) + 1 (‡)
with currying one obtains

Self // Self ⇒
(
(Self ×B) + 1

)
but here the domain of ⇒ is not a constant, so the latter interface type cannot be
represented with a polynomial functor. In object-oriented programming operations like
(‡) are called binary methods. Binary methods are the subject of Chapter 3. There I
consider interface functors and coalgebras that can model arbitrary polynomial method
types, including binary methods. The specification language ccsl (described in Chap-
ter 4) admits both method types (†) and (‡). To have nondeterminism in ccsl one has
to declare a type constructor for the powerset functor as a ground signature extension.

2.6.2. Bisimulations and Invariants

A bisimulation is a relation on the state space of a coalgebra that relates states that
cannot be distinguished by their observable behaviour. An invariant is a predicate on
the state space that, once it holds for a state x, remains valid for all states that can be
reached from x. Let me give an example before I proceed with the technicalities.

For a sequence coalgebra α : X //(A×X) + 1 and a state x ∈ X it is possible
to distinguish if x is empty. If x is nonempty one can observe the first element in x. A
relation R ⊆ X × X is a bisimulation for α if it relates only elements that cannot be
distinguished by observations. Formally, R must fulfil:

xR y implies

{
αx = κ1(a, x

′) ∧ α y = κ1(b, y
′) ∧ a = b ∧ x′Ry′ or

αx = α y = κ2 ∗

for all x, y ∈ X.
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Bisimulations date back to (Milner, 1989) where he used them to relate processes with
the same behaviour in the process calculus CCS. Bisimulations play also an important
role in judging the expressiveness of modal logics, see for instance (Stirling, 1992). For
coalgebras one needs a definition of bisimulation which is parametric in the functor
that describes the interface type. There are two traditions: Following Aczel and Mendler
in (Aczel and Mendler, 1989), a bisimulation is the state space of a coalgebra which makes
a certain diagram (of coalgebra morphisms) commute. Rutten, Hennicker, and Kurz
follow this approach in (Rutten, 2000) and (Hennicker and Kurz, 1999), respectively. In
this thesis I will call this the Aczel/Mendler approach and when necessary I will use the
term Aczel/Mendler bisimulation.

The second tradition stems from Hermida and Jacobs. In (Hermida and Jacobs,
1998) they define a special operation —called relation lifting— for polynomial functors.
Relation lifting is then used to define bisimulations. This approach is used for instance
in (Hensel, 1999; Hensel et al., 1998; Jacobs, 1997b). When necessary I use the term
Hermida/Jacobs bisimulation to avoid confusion.

Similar to bisimulations invariants can be either defined as subcoalgebras or via
predicate lifting. I use the terms Aczel/Mendler invariant and Hermida/Jacobs invariant
to distinguish both definitions.

Both the Aczel/Mendler approach and the Hermida/Jacobs approach to define bisim-
ulations and invariants have their advantages. Without discussing this in full detail, I
only note, that the Aczel/Mendler approach applies to all endofunctors, whereas relation
lifting is only defined for polynomials. The lifting of predicates and relations is a complex
operation on first sight, but in practice it is easier to work with definitions that are based
on predicate and relation lifting. For polynomial functors both approaches yield identical
notions. In the following I define predicate and relation lifting and the notions of bisim-
ulation and invariant in both, the Hermida/Jacobs and the Aczel/Mendler tradition.
Then I show that for polynomial functors both definitions are equivalent.

Definition 2.6.3 (Predicate and relation lifting) Assume a polynomial functor F
on the category Set. Predicate lifting maps F to an endofunctor on Pred; relation lifting
maps F to an endofunctor on Rel. More precisely for a predicate P ⊆ X, and a relation
R ⊆ X × Y we have

Pred(F ) : (P ⊆ X) � // (Pred(F )(P ) ⊆ F (X))

Rel(F ) : (R ⊆ X × Y ) � // (Rel(F )(R) ⊆ F (X)× F (Y ))

Predicate and relation lifting is defined by induction on the structure of F :

• If F (X) = X, then

Pred(F )(P ) = P

Rel(F )(R) = R
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• If F (X) = A (for A a constant set), then

Pred(F )(P ) = >A = (A ⊆ A)

Rel(F )(R) = Eq(A) =
(
{(a, a) | a ∈ A} ⊆ A× A

)
• If F (X) = F1(X)× F2(X), then

Pred(F )(P ) = Pred(F1)(P ) ×P Pred(F2)(P )

=
{
(x, y) | Pred(F1)(P )(x) and Pred(F2)(P )(y)

}
Rel(F )(R) = Rel(F1)(R) ×R Rel(F2)(R)

=
{
((x1, x2), (y1, y2)) | Rel(F1)(R)(x1, y1)

and Rel(F2)(R)(x2, y2)
}

• If F (X) = F1(X) + F2(X), then

Pred(F )(P ) = Pred(F1)(P ) +P Pred(F2)(P )

=
{
κ1 x | Pred(F1)(P )(x)

}
∪
{
κ2 y | Pred(F2)(P )(y)

}
Rel(F )(R) = Rel(F1)(R) +R Rel(F2)(R)

=
{
(κ1 x1, κ1 y1) | Rel(F1)(R)(x1, y1)

}
∪
{
(κ2 x2, κ2 y2) | Rel(F2)(R)(x2, y2)

}
• If F (X) = A⇒ F1(X), then

Pred(F )(P ) = >A ⇒P Pred(F1)(P )

=
{
f | f : A //F1(X) such that

∀a ∈ A . Pred(F1)(P )(f(a))
}

Rel(F )(R) = Eq(A) ⇒R Rel(F1)(R)

=
{
(f, g) | f : A //F1(X) , g : A //F1(Y )

such that ∀a ∈ A . Rel(F1)(R)(f(a), g(a))
}

Predicate and relation lifting works by substituting the cartesian closed structure of
Pred or Rel for the the cartesian closed structure of the base category in F . For con-
stants one substitutes truth or equality. The effect is as follows: If you think of an
element u ∈ F (X) as a structured box containing constants and elements of X, then
Pred(F )(P )(u) holds if P holds for all the elements of X in u. Relation lifting relates
two boxes u ∈ F (X) and v ∈ F (Y ). The pair (u, v) is in the relation Rel(F )(R) if both
u and v have the same structure and additionally constants in u and v at corresponding
places are equal and elements of X and Y at corresponding places in u and v are related
by R.
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Example 2.6.4 For the interface functor of sequences TSeq(X) = (A×X) + 1 one gets
for an arbitrary predicate P ⊆ X and a relation R ⊆ X × Y :

Pred(TSeq)(P ) = {κ1(a, x) | a ∈ A and x ∈ P} ∪ {κ2∗}
Rel(TSeq)(R) = {(κ1(a, x), κ1(b, y)) | a, b ∈ A ∧ a = b ∧ (x, y) ∈ R} ∪ {(κ2∗, κ2∗)}

Thus, Pred(TSeq)(P ) holds on next(s) if either s is the empty sequence or the tail of s
is in P . And (next s, next q) is in Rel(TSeq)(R) if either both s and r are empty or both
have the same first element a and, additionally, their tails are related by R. �

Predicate and relation lifting enjoy a lot of useful properties. I consider them in the
next subsection, here I continue with the definition of bisimulation and invariant.

Definition 2.6.5 (Hermida/Jacobs Invariant and Bisimulation) Let F be a
polynomial functor and consider two coalgebras c : X //F (X) and d : Y //F (Y ).

• A predicate P ⊆ X is called a Hermida/Jacobs invariant (for c) if for all x ∈ X

P (x) implies Pred(F )(P )(c x).

• A relation R ⊆ X × Y is called a Hermida/Jacobs bisimulation (for c and d) if for
all x ∈ X and y ∈ Y ,

R(x, y) implies Rel(F )(R)(c x, d y).

Invariants were first called mongruences in (Jacobs, 1995) in analogy with congru-
ences. (Rutten, 2000) uses the term subsystem for invariants.

Example 2.6.6 I described the notion of bisimulation for sequence coalgebras that
comes out of the preceding definition already at the beginning of this subsection. For
an example of an invariant assume that a and b are elements of A. The set of infinite
sequences that always output either a or b form the invariant Pab. It can be characterised
as

s ∈ Pab if and only if
(
next(s) = κ1(a, s

′) ∨ next(s) = κ1(b, s
′)
)
∧ s′ ∈ Pab �

Definition 2.6.7 (Aczel/Mendler Invariant and Bisimulation)
Assume an endofunctor T on Set and coalgebras c : X //T (X) and d : Y //T (Y ).

• A predicate P ⊆ X is called a Aczel/Mendler invariant (for c) if there exists a
subcoalgebra on P , that is if there is a coalgebra p : P //T (P ) such that the
inclusion ι : P //X is a T–coalgebra morphism p //c (i.e., the left diagram
below commutes).
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• A relation R ⊆ X × Y is called an Aczel/Mendler bisimulation (for c and d) if
there exists a coalgebra r : R //T (R) such that the projections π1 : R //X
and π2 : R //Y are T–coalgebra morphisms (i.e., if the right diagram below
commutes).

P
ι //

p

��

X

c
��

T (P )
T (ι) // T (X)

X

c
��

R
π1oo π2 //

r
��

Y

d
��

T (X) T (R)
T (π1)oo T (π2) // T (Y )

There is the following standard result.

Proposition 2.6.8 For polynomial functors the Hermida/Jacobs notions of invariant
and bisimulation coincide with the Aczel/Mendler notions.

Proof This proposition follows from the Propositions 3.4.20 and 3.4.21 (on page 102ff)
on extended polynomial functors. For illustration I sketch here a proof for polynomial
functors.

The fact about invariants follows from Pred(T )(P ) = T (P ), which is obvious from
the definition of predicate lifting. For bisimulations consider the following diagram

X

c

��

R
π1oo π2 //

r

��

GF ED

BC

c×d

oo

Y

d

��

F (R)
F (π1)

vvmmmmmmmmmmmmmm

〈F (π1), F (π2)〉

��

F (π2)

((QQQQQQQQQQQQQQ

F (X) F (Y )

Rel(F )(R)

π1

hhQQQQQQQQQQQQQ π2

66mmmmmmmmmmmmm

By induction on the structure of F one can show that 〈F (π1), F (π2)〉 restricts to an
isomorphism F (R) //Rel(F )(R). So from every Hermida/Jacobs bisimulation R one
can construct r as 〈F (π1), F (π2)〉−1 ◦ (c× d) and vice versa. �

Note that the proof shows that for polynomial functors in Set the witness for an
Aczel/Mendler invariant or bisimulation is uniquely determined. For the rest of this sec-
tion I will not distinguish between the Aczel/Mendler and the Hermida/Jacobs variants
of bisimulations and invariants. (The distinction will become important in Chapter 3.)
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2.6.3. Properties of Bisimulations and Invariants

All the following results about bisimulations and invariants have been taken from the
literature, especially from (Rutten, 2000). However, I prefer to give different proofs that
match the proofs in Section 3.4. The first lemma collects properties of predicate and
relation lifting.

Lemma 2.6.9 Let F be a polynomial functor on Set.

1. Predicate lifting and relation lifting is monotone, that is for predicates P,Q ⊆ X
and relations R,S ⊆ X × T we have

P ⊆ Q implies Pred(F )(P ) ⊆ Pred(F )(Q)

R ⊆ S implies Rel(F )(R) ⊆ Rel(F )(R)

So Pred(F ) and Rel(F ) are endofunctors on Pred and Rel, respectively.

2. Predicate lifting commutes with truth; relation lifting commutes with equality and
(−)op:

Pred(F )(>X) = >F (X)

Rel(F )(Eq(X)) = Eq(F (X))

Rel(F )(Rop) = (Rel(F )(R))op

3. If R is symmetric then also Rel(F )(R) is symmetric.

4. Predicate and relation lifting preserve arbitrary conjunctions. For a collection of
predicates(Pi)i∈i and a collection of relation (Ri)i∈I we have∧

i Rel(F )(Ri) = Rel(F )
(∧

iRi

)∧
i Pred(F )(Pi) = Pred(F )

(∧
i Pi

)
5. For disjunction we have∨

i Rel(F )(Ri) ⊆ Rel(F )
(∨

i Ri

)∨
i Pred(F )(Pi) ⊆ Pred(F )

(∨
i Pi

)
6. Relation lifting commutes with relational composition in the following sense

Rel(F )(R ◦ S) = Rel(F )(R) ◦ Rel(F )(S)

for relations R ⊆ X × Y and S ⊆ Y × Z.
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7. Predicate and relation lifting (of F ) are fibred (over F ). That is, assuming functions
f : U //X, g : V //Y , a predicate P ⊆ X, and a relation R ⊆ X × Y :

Pred(F )(f∗ P ) = (F (f))∗ Pred(F )(P )

Rel(F )((f × g)∗R) = (F (f)× F (g))∗Rel(F )(R)

Proof Item 3 follows from Item 2. The other items are proved by induction on the
structure of F . In the induction steps one uses the lemmas of Section 2.4.3. For Item 1
Lemma 2.4.5, for Item 2 the Lemmas 2.4.7, 2.4.8, and 2.4.11, for Item 4 Lemma 2.4.9,
for Item 5 the Lemmas 2.4.10 and 2.4.5, for Item 6 Lemma 2.4.12, and finally for Item 7
Lemma 2.4.15. �

These results about relation lifting give rise to the following results about bisimula-
tion and invariants.

Proposition 2.6.10 Consider three coalgebras c : X //F (X), d : Y //F (Y ), and
e : Z //F (Z) for a polynomial functor F .

1. Eq(X) is a bisimulation and >X an invariant.

2. Invariants are closed under union and intersection: for an arbitrary collection of
invariants (Pi)i∈I both

∧
i∈I Pi and

∨
i∈I Pi are invariants.

3. Similarly for bisimulations: for a collection of bisimulations (Ri)i∈I both
∧

i∈I Ri

and
∨

i∈I Ri are bisimulations.

4. The relation R is a bisimulation for c and d if and only if Rop is a bisimulation
for d and c.

5. If R is a bisimulation for c and d and S is a bisimulation for d and e then R ◦ S
is a bisimulation for c and e.

Proof Apply Lemma 2.6.9. Consider for instance the union of bisimulations (Item 3).
From (x, y) ∈

∨
iRi and the assumptions we get that there is some j ∈ I such that

(c x, d y) ∈ Rel(F )(Rj). Hence (c x, d y) ∈
∨

i Rel(F )(Ri) and Lemma 2.6.9 (5) implies
(c x, d y) ∈ Rel(F )(

∨
iRi), so

∨
iRi is a bisimulation for c and d. �

The Items 2 and 3 of the preceding Proposition imply that both invariants and bisim-
ulations for coalgebras of polynomial functors form a complete lattice. In particular for
any two coalgebras c : X //F (X) and d : Y //F (Y ) on the same interface func-
tor there exist a greatest bisimulation for c and d. This greatest bisimulation is called
bisimilarity and denoted with c↔ d.

Proposition 2.6.11 Bisimilarity c↔ c on one coalgebra is an equivalence relation.

Proof One proves c↔ d◦d↔ e ⊆ c↔ e and (d↔ c)
op ⊆ c↔ d with Proposition 2.6.10. �
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2.6.4. Bisimulations and Coalgebra Morphisms

This subsection relates bisimulations and coalgebra morphisms.

Proposition 2.6.12 Let c : X //F (X) and d : Y //F (Y ) be two coalgebras for a
polynomial functor F . A function f : X //Y is a morphism between c and d if and
only if the graph of f given by graph(f) =

∐
idX×f Eq(X) is a bisimulation for c and d.

Proof I have to show that for a function f : X //Y an arbitrary pair (c x, d(f x))
is in Rel(F )(graph(f)) if and only if F (f)(c x) = d(f x). The latter is equivalent with
(c x, d(f x)) ∈ (F (f)× idF (Y ))

∗ Eq(F (Y )).
First note that in Set there is an equivalence∐

idX×f Eq(X) = (f × idY )∗ Eq(Y ) (2.7)

Using this intermediate result I compute

Rel(F )(graph(f))

= Rel(F )
(
(f × idY )∗ Eq(Y )

)
by (2.7)

= (F (f)× F (idY ))∗Rel(F )(Eq(Y )) by 2.6.9 (7)

= (F (f)× idF (Y ))
∗ Eq(F (Y )) by 2.6.9 (2) �

The preceding proposition justifies the informal claim that coalgebra morphisms
preserve the observable behaviour. It implies that, for a coalgebra morphism f , it holds
that x c

↔ d f x.
The kernel of a function f : X //Y is a binary relation on X and contains pre-

cisely those pairs (x1, x2) for which f(x1) = f(x2). The kernel can be characterised as
ker(f) = graph(f) ◦ graph(f)op. The next result is an immediate consequence of the
Propositions 2.6.12 and 2.6.10 (5).

Proposition 2.6.13 For every polynomial functor F the kernel of an arbitrary mor-
phism between F–coalgebras is a bisimulation. �

2.6.5. Relating Bisimulations and Invariants

It is often useful to combine bisimulations and invariants to obtain new bisimulations
and/or invariants. The following two propositions are taken from (Jacobs, 1997b). Let
R ⊆ X × Y be a relation. Then

∐
π1
R = {x ∈ X | ∃y ∈ Y .R(x, y)} is a predicate on

X. Proposition 2.6.15 states that if R is a bisimulation, then
∐

π1
R is an invariant.

A second construction is R ∧ π∗1 P = {(x, y) | R(x, y) ∧ P (x)}. Proposition 2.6.17
shows that for a bisimulation R and an invariant P the relation R ∧ π∗1 P is a bisimu-
lation again. For both propositions adequate properties of relation lifting are necessary.
I need these lemmas about predicate and relation lifting in Section 3.4.4 (starting on
page 99) again when I prove the validity of the two mentioned constructions for extended
polynomial functors.
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Lemma 2.6.14 Let R ⊆ X×Y be an arbitrary relation and F be a polynomial functor.
Then ∐

π1
Rel(F )(R) = Pred(F )(

∐
π1
R)

Proof The proof goes by induction on the structure of F . In the induction steps one
uses Lemma 2.4.13. For instance for F = F1 × F2:∐

π1
Rel(F1 × F2)(R) =

=
∐

π1

(
Rel(F1)(R) ×R Rel(F1)(R)

)
=

(∐
π1

Rel(F1)(R)
)
×P

(∐
π1

Rel(F2)(R)
)

by 2.4.13

= Pred(F1)(
∐

π1
R) ×P Pred(F2)(

∐
π1
R) by Ind. Hyp.

= Pred(F1 × F2)(
∐

π1
R) �

Proposition 2.6.15 Consider two F–coalgebras c : X //F (X) and d : Y //F (Y ),
and a relation R ⊆ X×Y . If R is a bisimulation for c and d then

∐
π1
R is an invariant

for c.

Proof Assume that R is a bisimulation for c and d. Define P
def
=
∐

π1
R. I have to show

that for all x ∈ P also c(x) ∈ Pred(F )(P ) holds. Assuming x ∈ P there exists y ∈ Y
such that R(x, y) and because R is a bisimulation I have (c(x), d(y)) ∈ Rel(F )(R). With
Lemma 2.6.14 c(x) ∈ Pred(F )(

∐
π1
R) follows. �

Now towards the second construction.

Lemma 2.6.16 Let F be a polynomial functor, S and R arbitrary relations, and P and
Q arbitrary predicates. Then

Rel(F )(R) ∧ π∗1
(
Pred(F )(P )

)
= Rel(F )(R ∧ π∗1 P )

Proof The proof proceeds by induction on the structure of F . The induction steps
exploit Lemma 2.4.14. For the case of the product we have for instance

Rel(F1 × F2)(R) ∧ π∗1
(
Pred(F1 × F2)(P )

)
=

(
Rel(F1)(R) ×R Rel(F2)(R)

)
∧

π∗1
(
Pred(F1)(P ) ×P Pred(F2)(P )

)
=

(
Rel(F1)(R) ×R Rel(F2)(R)

)
∧ by 2.4.14(

π∗1 (Pred(F1)(P )) ×R π∗1 (Pred(F2)(P ))
)

=
(
Rel(F1)(R) ∧ π∗1

(
Pred(F1)(P )

))
×R by 2.4.9 (2)(

Rel(F2)(R) ∧ π∗1
(
Pred(F2)(P )

))
= Rel(F1)(R ∧ π∗1 P ) ×R Rel(F2)(R ∧ π∗1 P ) by Ind. Hyp.

= Rel(F1 × F2)(R ∧ π∗1 P ) �
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Proposition 2.6.17 Consider two F–coalgebras c : X //F (X) and d : Y //F (Y ),
a predicate P ⊆ X, and a relation R ⊆ X × Y . If P is an invariant for c and R is a
bisimulation for c and d then also R∧π∗1 P = {(x, y) | R(x, y)∧P (x)} is a bisimulation
for c and d.

Proof Assume x ∈ X with P (x) and y ∈ Y with R(x, y). From the assumptions that
P is an invariant and R is a bisimulation I know that c(x) ∈ Pred(F )(P ) and that
(c(x), d(y)) ∈ Rel(F )(R). With Lemma 2.6.16 I conclude that indeed (c(x), d(y)) ∈
Rel(F )(R ∧ π∗1 P ). �

It is now possible to derive more results on a higher level of reasoning.

Proposition 2.6.18 Let c : X //F (X) and d : Y //F (Y ) be two coalgebras for a
polynomial functor F and let f : c //d be a coalgebra morphism.

1. If P ⊆ X is an invariant for c then
∐

f P is an invariant for d.

2. If Q ⊆ Y is an invariant for d then f∗Q is an invariant for c.

Proof The graph of f is given as
∐

idX×f Eq(X) = (f × idY )∗ Eq(Y ) as a relation
over X × Y . Proposition 2.6.12 shows that this relation is a bisimulation. If P is an
invariant then, because of Proposition 2.6.17,

∐
idX×f Eq(X) ∧ π∗1 P is a bisimulation

too. Proposition 2.6.15 shows then that
∐

π2

(∐
idX×f Eq(X) ∧ π∗1 P

)
is an invariant.

Now I compute∐
π2

(∐
idX×f Eq(X) ∧ π∗1 P

)
=

∐
π2

∐
idX×f

(
Eq(X) ∧ (idX × f)∗ π∗1 P

)
by Frobenius

=
∐

f

∐
π2

(∐
δ >X ∧ π∗1 P

)
=

∐
f

∐
π2

∐
δ

(
>X ∧ δ∗ π∗1 P

)
by Frobenius

=
∐

f (>X ∧ P )

=
∐

f P

This proves Item 1. For Item 2 I obtain from the same lemmas that∐
π1

(
(f × idY )∗ Eq(Y ) ∧ π∗2 Q

)
is an invariant. Then∐

π1

(
(f × idY )∗ Eq(Y ) ∧ π∗2 Q

)
=

∐
π1

(
(f × idY )∗

∐
δ >Y ∧ (f × idY )∗ π∗2 Q

)
=

∐
π1

(f × idY )∗
(∐

δ >Y ∧ π∗2 Q
)

fibred ∧
=

∐
π1

(f × idY )∗
∐

δ

(
>Y ∧ δ∗ π∗2 Q

)
by Frobenius

=
∐

π1

∐
〈idX ,f〉 f

∗ (>Y ∧ δ∗ π∗2 Q
)

by BC

= f∗Q �
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The next result appears as Proposition 6.2 in (Rutten, 2000).

Proposition 2.6.19 Let c : X //F (X) be a coalgebra of a polynomial functor F . A
predicate P ⊆ X is an invariant for c if and only if the diagonal on P , the relation∐

δ P , is a bisimulation for c.

Proof If
∐

δ P is a bisimulation, then
∐

π1

∐
δ P = P is an invariant by Proposi-

tion 2.6.15. If, for the other direction, P is an invariant, then by Frobenius
∐

δ P =
Eq(X) ∧ π∗ P and

∐
δ P is a bisimulation by Propositions 2.6.17 and 2.6.10 (1). �

2.6.6. Least and Greatest Invariants

Let α : X //F (X) be an arbitrary coalgebra for a polynomial functor F . Proposi-
tion 2.6.10 (2) shows that the invariants for α form a complete lattice. In particular
there exists, for any predicate P ⊆ X, the greatest invariant contained in P , to be
denoted with P , and the least invariant containing P , denoted with P . Obviously

P =
∧

{Q | P ⊆ Q and Q is an invariant }
P =

∨
{Q | Q ⊆ P and Q is an invariant }

and also

P ⊆ Q implies P ⊆ Q and P ⊆ Q

It is possible to get alternative characterisations for the greatest invariant P via the
Knaster/Tarski fixed point theorem (Tarski, 1955). Consider the following endofunctor
on the fibre PredX for a fixed predicate P ⊆ X:

ΦP (Q ⊆ X)
def
= P ∧ α∗ Pred(F )(Q)

Any fixed point of ΦP is an invariant implying P . For an invariant Q smaller than P it
holds that Q ⊆ ΦP (Q). Therefore the Knaster/Tarski theorem implies

P =
∨
{Q | Q ⊆ ΦP (Q)} (∗)

=
∨
{Q | Q ⊆ P ∧ α∗ Pred(F )(Q)}

Consider now the descending chain (Pi)i∈N defined as

P0
def
= >X Pi+1

def
= ΦP (Pi)

So P1 = P and P2 = P ∧ α∗ Pred(F )(P ) and so on. The limit
∧

i Pi of the chain is a
fixed point for ΦP because

ΦP (
∧

i Pi) = P ∧ α∗ Pred(F )(
∧

i Pi)

= P ∧ α∗
∧

i Pred(F )(Pi) by 2.6.9 (4)
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= P ∧
∧

i

(
α∗ Pred(F )(Pi)

)
(†)

=
∧

i

(
P ∧ α∗ Pred(F )(Pi)

)
= P0 ∧

∧
i Pi+1 =

∧
i Pi

The line (†) follows from the fact that I–indexed conjunctions are fibred (see page 37).
So
∧

i Pi is a fixed point of ΦP . To show that it is the largest one, assume a fixed point
Q = ΦP (Q). Because Q ⊆ >X we have also Q = ΦP (Q) ⊆ ΦP (>X) = P1 and by
induction Q ⊆ Pi for all i. Therefore Q ⊆

∧
i Pi and finally

P =
∧

i Pi

This last characterisation for the greatest invariant P corresponds to the intuitive way of
computing P from P : Starting from P one deletes all those x ∈ P that have a successor
state y /∈ P . In (Jacobs, 1997b) the greatest invariant is computed as the limit of the
chain

P ′
0

def
= P P ′

i+1
def
= P ′

i ∧ α∗ Pred(F )(P ′
n)

This is essentially the same, because P ′
i = Pi+1.

One can also present least invariants as fixed points of an endofunctor on PredX

and also as the limit of an ascending chain of predicates. Such a presentation justifies
the intuitive way of obtaining P from P : Starting from x ∈ P one adds all reachable
successor states of x to P . However to construct the ascending chain in a general way
one needs the left adjoint of Pred(F ) (considered as a functor PredX

//PredF (X) ).
This has been done in (Jacobs, 1997b), I would like to omit the technicalities here.

2.6.7. Final Coalgebras

A T–coalgebra γ is final if it is the final object in the category of T–coalgebras. This is
the case if for any coalgebra α there exists exactly one coalgebra morphism !α : α //γ .
The final coalgebra is, if it does exist, an isomorphism. Further, any two final coalgebras
are isomorphic (as objects in CoAlg(T )).

I explained before that an element x of the state space of a T–coalgebra can be
considered as an automaton. Assume that γ : Z //T (Z) is the final T–coalgebra. The
unique morphism ! into the final coalgebra maps x to an automaton in Z. Coalgebra
morphisms preserve the observable behaviour. So any possible state of any T–automaton
can be mapped to a state in Z with the same behaviour. Because of the uniqueness aspect
of finality the automaton γ is minimal: There are no two different states in Z that show
the same behaviour. These properties suggest to consider the state space of the final T–
coalgebra as the type of all possible behaviours of T–coalgebras. A type that is defined
in this way as the state space of some final coalgebra is called a behavioural type in this
thesis.

For final coalgebras there are the following results in (Rutten, 2000).
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Theorem 2.6.20 For all polynomial functors F on Set there exists a final F–coalgebra.

There are more general results available, see (Kawahara and Mori, 2000; Aczel and
Mendler, 1989).

Proof (Sketch) Polynomial functors are continuous, therefore the final F–coalgebra can
be obtained as limit of the chain

1 F (1)!oo F 2(1)
F (!)oo F 3(1)

F 2(!)oo F 4(1) · · ·
F 3(!)oo �

Proposition 2.6.21 Let F be a polynomial functor. The bisimilarity on the final F–
coalgebra γ : Z //F (Z) is contained in the equality: γ↔ γ ⊆ Eq(Z).

Together with Proposition 2.6.10 (1) this means that for two states x, y ∈ Z we have
x γ↔ γ y if and only if x = y.

Proof Consider γ↔ γ as a set of pairs over Z. Proposition 2.6.8 shows that there is a

coalgebra r : γ
↔ γ

//F (γ
↔ γ) such that the projections Z γ↔ γ

π1oo π2 //Z are coal-

gebra morphisms r //γ . Finality of γ yields π1 = π2 so x = π1(x, y) = π2(x, y) = y for
any pair x γ↔ γ y. �

With the propositions 2.6.12 and 2.6.10 (5) we obtain the following Corollary.

Corollary 2.6.22 Consider two coalgebras c : X //F (X) and d : Y //F (Y ) for a
polynomial functor F . Two states x ∈ X and y ∈ Y are bisimilar (i.e., x c↔ d y) if and
only if x and y have equal images in the final F–coalgebra (i.e., !c(x) = !d(y)). �

In the remainder of this section I show how finality can be exploited in the example of
sequences. Let me first construct the final sequence coalgebra to get an impression about
how final coalgebras look like. The state space Seq[A] of the final sequence coalgebra is
given by

Seq[A] = {f : N //A+ 1 | ∀n ∈ N . f(n) = ⊥ implies ∀m > n . f(m) = ⊥}

where ⊥ = κ2 ∗. The final sequence coalgebra next : Seq[A] //TSeq(Seq[A]) is given by

next(f) =

{
⊥ if f(0) = ⊥
κ1(a, λn . f(n+ 1)) if f(0) = κ1a

(2.8)

To show that next is indeed the final coalgebra I have to construct a coalgebra morphism
!α : α //next for every sequence coalgebra α : X //TSeq(X). For that I need an utility
function αn : X //A+ 1:

α0(x) =

{
⊥ if αx = ⊥
κ1 a if αx = κ1(a, x

′)

αn+1(x) =

{
⊥ if α(x) = ⊥
αn(x′) if α(x) = κ1(a, x

′)
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Now

!α(x) = λn ∈ N . αn(x) (2.9)

From the definition of !α it is clear that !α x ∈ Seq[A]. It remains to show that !α lets
Diagram 2.6 commute. Assume an arbitrary x ∈ X, then

next(!α x) =

{
⊥ if α0 x = ⊥
κ1(a, λn . α

n+1 x) if α0 x = κ1a

=

{
⊥ if αx = ⊥
κ1(a, !α(x′)) if αx = κ1(a, x

′)

So !α is indeed a coalgebra morphism. For the uniqueness of !α assume a second coalgebra
morphism g : α //next . Then for any x ∈ X and n ∈ N

g x n = nextn(g x) by definition of nextn

= αn x g is a coalgebra morphism

= !α xn

where nextn is defined in the same way as αn. Thus g = !α.
The preceding example of sequences is very typical. As above, the state space of the

final coalgebra is often a set of functions. The difficulties in proving finality lie in the
construction of the final coalgebra and in the construction of the mediating morphism
!α. Proving uniqueness is usually easy.

The final coalgebra admits coinduction, both as a definition and as a proof principle.
As a definition principle coinduction allows one to construct functions into the final
coalgebra, that is, to construct states of the final coalgebra. The coinduction proof
principle allows one to proof that two state of the final coalgebra are equal. Let me
explain these two principles on the example of sequences.

There is precisely one empty sequence in Seq[A]. To construct it consider the sequence
coalgebra

bot : 1 //TSeq(1) : ∗ � // ⊥

The unique sequence coalgebra morphism !bot maps ∗ to an element in Seq[A] — the
empty sequence denoted with empty.

As a second example for the definition principle I define the interleaving of two
sequences. Note that this cannot be done by induction (or by a recursive function)
because both sequences might be infinitely long. Consider the following TSeq–coalgebra
on Seq[A]× Seq[A].

nextmix(s, q) =


⊥ if next(s) = next(q) = ⊥
κ1(a, (s, q

′)) if next(s) = ⊥ ∧ next(q) = κ1(a, q
′)

κ1(a, (q, s
′)) if next(s) = κ1(a, s

′)
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The finality of Seq[A] provides a coalgebra morphism mix : Seq[A]× Seq[A] //Seq[A]
and the commutation of Diagram 2.6 corresponds to the equation

next(mix(s, q)) =


⊥ if next(s) = next(q) = ⊥
next(mix(q, s)) if next(s) = ⊥ ∧ next(q) 6= ⊥
κ1(a,mix(q, s′)) if next(s) = κ1(a, s

′)

If the definition of mix meets our intuition, it should be possible to proof, for an arbitrary
sequence s ∈ Seq[A], that

mix(empty, s) = s

The coinduction proof principle that allows one to prove this equation is as follows:
One constructs a bisimulation that relates both s and mix(empty, s), then by Proposi-
tion 2.6.21 it follows that they are equal. A suitable bisimulation for this equation is for
instance

sR q if and only if s = mix(empty, q)

for all s, q ∈ Seq[A].
It is possible to formulate the coinduction proof principle for an arbitrary fibration.

The general formulation is in (Hermida and Jacobs, 1998). Let me show how this looks

like for the fibration
SRel
↓

Set
of single carrier binary relations. The relation lifting of TSeq

gives the functor Rel(TSeq) on SRel, defined as

Rel(TSeq) :
(
R ⊆ X ×X

)
//
(
Rel(TSeq)(R) ⊆ TSeq(X)× TSeq(X)

)
Rel(TSeq)(R) = (Eq(A)×RR) +R Eq(1)

A coalgebra for Rel(TSeq) on a relation R consists of a TSeq–coalgebra α on X together
with the following implication

s R q implies

{
α(s) = α(q) = ⊥ or
∃a ∈ A .α(s) = κ1(a, s

′) ∧ α(q) = κ1(a, q
′) ∧ s′ R q′

(∗)

So α forms a Rel(TSeq)–coalgebra on R in SRel if and only if R is a bisimulation for α.
Hermida and Jacobs prove in (Hermida and Jacobs, 1998) the existence of a fi-

nal object preserving functor CoAlg(TSeq) //CoAlg(Rel(TSeq)). This functor maps the
sequence coalgebra next to a coalgebra on the carrier Eq(Seq[A]). Assume we have a
relation R ⊆ Seq[A]× Seq[A]. If we can prove (∗) for R, then there is a Rel(TSeq) coal-
gebra with state space R in SRel. By the finality of the coalgebra on Eq(Seq[A]) we get
a (vertical) morphism R //Eq(Seq[A]). This latter morphism corresponds to a proof
of the following statement: ∀x, y . xR y implies x = y. In other words the coinduction
principle holds in SRel: to prove that two sequences are equal, it is enough to construct
a bisimulation that relates both.
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2.7. Summary

This chapter introduced the standard concepts of categories, fibrations, algebras and
coalgebras. Further it investigated the fibration of predicates Pred and the fibration of
relations Rel in detail.

The results listed in Section 2.4 serve as a tool box for the next chapter. All the re-
sults about predicates and relations can be roughly divided into three groups: First those
results that hold without restriction for all of product, coproduct, and exponent. This
includes the lemmas about truth (Lemma 2.4.7), equality (2.4.8), and opposite relation
(2.4.11). The second group contains those properties that hold for exponents only in
a restricted version. Examples are the lemmas about conjunction (Lemma 2.4.9), com-
position (2.4.12), and (co–)fibredness (2.4.17). The third group contains Lemma 2.4.10
about disjunction.

The separation into three groups leads to different levels of generalisation of polyno-
mial functors in the next chapter. Group one leads to properties that hold for the most
general form of higher-order polynomial functors (discussed in Section 3.2 on page 79ff).
Properties that depend on the second group hold only for the intermediate generalisation
of extended polynomial functors (discussed in Section 3.4 on page 93ff).

The two results about the union of bisimulations and invariants depend on the third
group (i.e., on Lemma 2.4.10). Therefore straightforward generalisations of these two re-
sults do not hold for any generalisation of polynomial functors considered in the present
thesis. To obtain the result about the union of invariants one has to choose a different
generalisation of the notion of invariant (see Subsection 3.4.6). For the union of bisimu-
lations a careful analysis yields extended cartesian functors as the least generalisation of
polynomial functors (see Section 3.5). For coalgebras of extended cartesian functors the
result about the union of bisimulations holds under additional (reasonable) assumptions.
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This chapter presents an approach to define a notion of coalgebra that is capable of
modelling arbitrary method types (including binary methods) as they occur in object-
oriented programming. A large part of the results described in this chapter appeared
originally in (Tews, 2000b), the extended version (Tews, 2001), and in (Tews, 2002b).

In the course of this chapter I present three different generalisations of polynomial
functors: higher-order polynomial functors, extended polynomial functors, and extended
cartesian functors. They are all functors Cop ×C //C , for a bicartesian closed cate-
gory C. Higher-order polynomial functors are the most general class. They can model
all method types that have been built up from constants, products, coproducts, and
exponents. The other two classes restrict the use of the exponent. Thereby it is possible
to prove certain properties for the restrictions that do not hold in the general case. For
an intuitive description of the differences of all these classes of functors see Table 1.1 in
the introduction on page 6 and the explanation there.

The first section of this chapter discusses binary methods and especially the prob-
lems they pose in a theoretical approach to object-oriented programming. Section 3.2
defines the class of higher-order polynomial functors (Definition 3.2.1 on page 79) and
an associated notion of coalgebra. The following Section 3.3 defines the notions of bisim-
ulation and invariants for such coalgebras. It turns out that bisimulations and invariants
for coalgebras of higher-order polynomial functors lack many desired properties in gen-
eral. It does, for instance, not hold that they are closed under intersection. Section 3.4
defines the first restriction of higher-order polynomial functors: the class of extended
polynomial functors (Definition 3.4.1 on page 93). Many familiar results (like the one
about intersections) can be proved for extended polynomial functors. So Section 3.4 is a
large collection of results about coalgebras of extended polynomial functors. Besides the
results that I proved, there is an important deficiency for extended polynomial functors:
For coalgebras of extended polynomial functors there is is no greatest bisimulation in
general. In Section 3.5 I consider the subclass of extended cartesian functors. For these
functors it is possible to adopt the result of (Poll and Zwanenburg, 2001) that greatest
bisimulations exist for a suitable strengthened definition of bisimulation. In Section 3.6
I investigate the existence of final coalgebras for generalised polynomial functors. The
last section judges the results obtained in this chapter.
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3.1. The Problem of Binary Methods

The term binary method comes from object-oriented programming and describes meth-
ods that take an additional argument of their hosting class. Consider the declaration of
a class of (functional) points in a plane:

class Point
methods

get x : Self −→ real
get y : Self −→ real
move : Self × real × real −→ Self
equal : Self × Self −→ bool

end Point

As usual in object-oriented programming I use the keyword Self to denote the type of
the class that is being defined. In a typical object-oriented programming language all
methods get an implicit first argument of type Self that is not mentioned in the type of
the methods. On invocation, the object for which the method is called, takes the place of
the first argument. Inside the method body this implicit first argument is available via a
special keyword: for example this in C++ (Stroustrup, 1997) or Current in Eiffel (Meyer,
1992). In this thesis I always work with the full type of the methods, including the
implicit Self–argument like in the preceding example.

In real programming languages such as Eiffel, C++ or ocaml (Leroy et al., 2001)
one would implement the operations get x and get y as attributes or fields. The intention
here is, that they deliver the X and the Y coordinate of the point, respectively. The
method move is an ordinary method that changes the internal state of the current object.
In most programming languages the method move would be a procedure (or a function
of type void) that changes the current object in place and returns nothing. The aim of
this thesis is to describe a verification environment for object-oriented programming.
For that it is necessary to model objects in a functional way: The method move leaves
the current object untouched and returns instead the (changed) successor state. The
method equal takes two points and returns true, if the two points are to be considered
equal for an outside observer (note, that this might be the case, even if the internal
state of the two points differs). The method equal is usually called a binary method for
obvious reasons. By a standard abuse of terminology, also n–ary methods, which take
more than two arguments of type Self, are referred to as binary methods (Bruce et al.,
1995).

A second (standard) example where binary methods are important are classes that
implement numbers. All the usual arithmetic operations would be binary methods there.
A third example are sets. There the set-theoretical operations union and intersection
would be binary methods. Another example connected with side effects in a purely
functional setting is discussed below.
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In (Tews, 2001) I attempt a further generalisation of the term binary method: Also
higher-order methods, where Self occurs in the type of the higher-order argument are
called binary methods. The common characteristic of binary methods is, that their types
contain at least two occurrences of Self in contravariant position. A precise definition
of the term binary method in the context of the specification language ccsl is given in
Chapter 4 on page 143.

For an example of these more general binary methods consider the following class
NeighbourhoodPoint, which is derived from Point by inheritance.

class NeighbourhoodPoint
inherit from Point
methods

register neighbour: Self × Addr −→ Self
move with neighbours: Self × (Addr −→ Self) × real × real −→ (Addr −→ Self)

end NeighbourhoodPoint

The idea here is that different points of a plane are stored at addresses of type Addr.
A function Addr //Self captures the state of the plane and can be used to retrieve
single points. With the method register neighbour one can assign neighbour points to
a given point. This assignment is done by addresses so that the neighbours can them-
selves change their state without affecting the neighbourhood relationship. The method
move with neighbours can be used to move a point together with all assigned neighbours.
This method first needs the state of the whole plane as an argument because it has to
access the neighbour points. It further changes the state of the whole plane, therefore it
also returns a function Addr //Self . This example shows how general binary methods
can be used to model side effects in a functional setting.

Note that generalised binary methods are only available in a few programming lan-
guages. In Java and Eiffel there is no function type constructor, so one cannot declare
an argument of type Addr //Self . Also C++ lacks function types but there one can use
pointers to functions. Only in ocaml there is no restriction on the type of arguments.

Binary methods do not occur very frequently in practice. Nevertheless they are an
important ingredient of object-oriented programming. So any approach to a semantical
foundation of object-oriented programming is incomplete, if it does not treat binary
methods. However, the usual practice in object-oriented programming makes binary
methods a very tough theoretical problem. In order to judge the results of this chapter
it is necessary to illustrate these problems in greater detail.

Consider the following subclass ColouredPoint of class Point. For simplicity I model
colours with natural numbers:

class ColouredPoint
inherit from Point
methods
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colour : Self −→ nat
equal : Self × Self −→ bool

end Point

The method equal is listed again to indicate that, in an implementation the method equal
should be overridden to take the colour into account, when comparing coloured points.
In most object-oriented languages an object of the subclass ColouredPoint can be used
where an object of the super class Point is expected. Assume that we pass a coloured
point p into a procedure that expects an object of class Point and assume further that this
procedure calls the method equal with a second argument q of class Point. In this case the
implementation of class ColouredPoint for the method equal would be called.1 This code
would try to access the colour field of q. Depending on the actual language used, this
can yield anything between strange results, a runtime exception (possibly caught by the
program), and a crash of the whole system. Strictly speaking the problem is not caused
by the binary method itself. The origin lies in the fact that in the class ColouredPoint
we specialised the second argument of equal to a subtype (namely ColouredPoint) of
its original type (Point). The specialisation of argument types during inheritance is
an important technique in object-oriented programming. It is often explicitly allowed
in programming languages at the price of loosing (static) type safety. One prominent
example is Eiffel (Meyer, 1992; Cook, 1989).2 In contrast the specialisation of a result
type of a method to a subtype is harmless.

In the last decades many researchers proposed semantic foundations for object-
oriented programming on the basis of type theory. One of the most worked out systems is
the ς–calculus of (Abadi and Cardelli, 1996). A number of approaches to encode object-
oriented programming in various versions of λ–calculi is compared in (Bruce et al., 1997).
In all the work inspired by type theory, one aim is to give a type system that prevents
type errors as in the example above. A large number of different proposals about how
to solve the typing problem with binary methods is compared in (Bruce et al., 1995).
To illustrate the difficulty I sketch two possible solutions in the following.

One solution, which is for instance adopted by ocaml, is to separate subtyping and
inheritance following the slogan Inheritance is not subtyping from (Cook et al., 1990).
In this approach the typechecker would forbid the user to pass a coloured point to a
procedure that expects an ordinary point. However, this approach is quite restrictive. It
denies many useful applications of argument type specialisation. (In ocaml some —but
not all— of these applications can be mimicked through polymorphic classes; see Part
II of (Leroy et al., 2001)).

Another interesting solution is proposed by Castagna in (Castagna, 1997). He sug-
gests to enrich the basic λ–calculus with multimethods and to use a more intelligent

1I assume that late binding applies to the method equal, so in terms of C++, equal should be declared
as virtual.

2Strictly speaking Eiffel is defined as a type safe language, but no compiler currently available imple-
ments all the necessary checks (Eiffel FAQ, 2001).
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strategy for overriding and method dispatch. In the above example the method equal
of class ColouredPoint would have two implementations. The algorithm of dynamic dis-
patch would take both argument points into account (instead of only the first one) when
choosing which implementation should be called. In the above example where the method
equal is called for the coloured point p with an ordinary point q as argument, the method
equal of class Point would be called. The approach of Castagna is type safe. However,
programs compiled with this technique might sometimes execute different methods than
the user expects.

One can summarise that the type-theoretic approaches translate terms and types
of object-oriented languages into type theory. They do neither describe valid imple-
mentations on a general level, nor do they define behavioural equivalence (bisimilarity)
of objects. The employed type theories are complex like for instance Fω,≤ (Pierce and
Steffen, 1997) and do not have a set-theoretic semantics (Reynolds, 1984).

A completely different approach to give a semantics to object-oriented languages was
proposed by (Reichel, 1995). There the interface of a class is captured by an endofunctor
T on a category C with suitable structure. A class, that is an actual implementation of
the interface, is given by a coalgebra c : X //T (X). Here X is the collection of all ob-
jects, or more precisely, all possible objects states. Applying the coalgebra to one object
yields the results of all methods and the values of all attributes at once. It is important
to notice, that the coalgebraic approach models object-orientation on a different level
and addresses different points than the type-theoretic approach described above. Using
coalgebras one gets uniform definitions for terms like behaviour of an object, behavioural
equivalence between objects (bisimilarity), and invariance. Additionally one has a suit-
able definition and proof principle: Coinduction. As a semantic universe one can choose
an arbitrary category, especially the familiar category Set of sets and total functions.
The coalgebraic approach does not directly address the problems of inheritance, sub-
typing, late binding, and overriding. These phenomena have to be modelled separately
in the chosen category, see for instance (Jacobs, 1996b; Jacobs, 1996a; Poll, 2001) or
Section 4.8 (starting on page 209) in the present thesis.

It comes now as little surprise that binary methods are difficult in coalgebraic specifi-
cation for completely different reasons than in the type-theoretic approaches. In coalge-
braic specification binary methods are difficult, because endofunctors are not expressive
enough to model signatures with binary methods. To be precise, a signature with a bi-
nary method gives rise to an endofunctor on a category C only if each arrow in C is
revertible (i.e., for every f : X //Y there must be a f : Y //X ).

This chapter elaborates on one possible solution, namely to use a different class
of functors to model signatures. I propose to use the class of higher-order polynomial
functors (Definition 3.2.1 on page 79) or one of its subclasses extended polynomial func-
tors (Definition 3.4.1 on page 93) or extended cartesian functors (Definition 3.5.1 on
page 108). The difficulty in this approach is, that I have to give new definitions for coal-
gebra, bisimulation, and invariant for the new classes of functors. The whole standard
literature on coalgebras for endofunctors (Rutten, 2000; Gumm, 1999) does not apply
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to the new notion of coalgebra.
Before I present my solution I discuss two other proposals on how to deal with binary

methods in the coalgebraic approach. The first solution is to omit the binary methods
from the signature and define them as definitional extension (Jacobs, 1996a). This can
be done, if the behaviour of the binary method is completely defined in terms of the
other methods and attributes. For instance in the point example one usually expects
that for all points p and q it holds that

equal(p, q) if and only if get x(p) = get x(q) and get y(p) = get y(q) (∗)

Under this assumption one can remove equal from the signature Point and take instead
(∗) as a generic definition. The disadvantage of using definitional extensions is imme-
diate: One can only work with binary methods that can be defined in the logic of the
specification environment. Further, the observations that can be made through the bi-
nary method are determined by the other methods.

Based on similar ideas (Hennicker and Kurz, 1999) present algebraic extensions of
coalgebras. There the algebraic extension of a coalgebraic signature contains operations
that do not contribute to the observable behaviour of any object (which is ensured
by a technical condition). Binary methods with a codomain of Self can be modelled
as algebraic extension (so the method equal does not fit into an algebraic extension).
The advantage of algebraic extensions with respect to definitional extensions is that the
requirement of providing a definition is relaxed into checking a condition. However, the
behaviour of the binary methods is still determined by the other methods.

The second solution of the problem with binary methods is to shift the focus of the
specification from single objects to whole systems of objects. Assume a class signature
C with a binary method bm. Any nontrivial application of bm involves several different
objects. So its very likely that apart from the class specification itself one also models
additional structure to store possibly many objects of the class C. One can circumvent
the problems with binary methods if one specifies the whole object system together with
the objects at once. This is best illustrated with an example.

Instead of single points we develop a signature for a structure that can store many
points. To access the different points we use an index type Index (which I would like to
leave open).

class PointStore
methods

get x : Self × Index −→ real
get y : Self × Index −→ real
move : Self × Index × real × real −→ Self
equal : Self × Index × Index −→ bool

end PointStore

To invoke a method we need now an object of PointStore and an index, which determines
on which of the possible many points the method is run. Note that the method equal
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takes now two arguments of type Index, so the signature of PointStore can be modelled
with a polynomial functor.

This approach to circumvent the problem with binary methods is used in the for-
malisation of Java within the loop project (van den Berg et al., 1999; Huisman, 2001).
It works well there, because the semantics by Jacobs and colleagues does not preserve
object types: All objects of all possible Java classes are mapped to the type ObjectCell
that can model any state of any object.

The approach to model the whole system (instead of single classes) gets complicated
if several class types should be modelled. A second disadvantage is that the coalgebraic
machinery yields a notion of bisimilarity for the whole system, but not for individual
objects. Third, in an axiomatic specification one has to give many axioms that state that
objects at different indexes are independent. In the example of PointStore one needs for
instance

get x(move(s, i, r1, r2), j) = get x(s, j)

for all objects s of PointStore all indices i and j with i 6= j.

3.2. Higher-Order Polynomial Functors

This section introduces the class of higher-order polynomial functors and a generalised
notion of coalgebra. Higher-order polynomial functor are a proper superclass of polyno-
mial functors. They form a conservative extension of polynomial functors: every coalge-
bra for a polynomial functor is also a coalgebra for a higher-order polynomial functor.

Definition 3.2.1 (Higher-order polynomial functors) Assume a bicartesian closed
category C. A functor H : Cop ×C //C is called a higher-order polynomial functor, if
it is defined as one of the cases

H(Y,X) =


X
A
H1(Y,X)×H2(Y,X)
H1(Y,X) +H2(Y,X)
H1(X, Y ) ⇒ H2(Y,X)

where A is an arbitrary object of C and H1 and H2 are previously defined higher-order
polynomial functors. The morphism part is defined in the obvious way:

H(g, f) =


f
idA

H1(g, f)×H2(g, f)
H1(g, f) +H2(g, f)
H1(f, g) ⇒ H2(g, f)

if H(Y,X) =


X
A
H1(Y,X)×H2(Y,X)
H1(Y,X) +H2(Y,X)
H1(X, Y ) ⇒ H2(Y,X)
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Higher-order polynomial functors work on two arguments. This is necessary to sepa-
rate occurrences of the arguments with positive and negative variance. Both arguments
are therefore swapped on the left hand side of ⇒.

Definition 3.2.2 (Category of Coalgebras) Let H : Cop ×C //C be a higher-
order polynomial functor. A H–coalgebra is a morphism c : X //H(X,X) in C. Let
d : Y //H(Y, Y ) be another H–coalgebra. An arrow f : X //Y is a H–coalgebra mor-
phism f : c //d , if the following diagram commutes (recall that H(X, f) = H(idX , f)):

X
c //

f

��

H(X,X)
H(X,f)

))SSSSSSSSSSSSSS

H(X, Y )

Y
d // H(Y, Y )

H(f,Y )

55kkkkkkkkkkkkkk

Because H preserves composition and identities the composition of two coalgebra mor-
phisms is a coalgebra morphism again. So the above defines the category CoAlg(H) of
H–coalgebras for each higher-order polynomial functor H.

The notion of subcoalgebras is defined as for polynomial functors. Let H be a higher-
order polynomial functor on the category Set (i.e., H : Setop × Set //Set). A coal-
gebra d : Y //H(Y, Y ) is a subcoalgebra of c : X //H(X,X) if Y ⊆ X and if the

inclusion ι : Y � � //X is a coalgebra morphism d
ι //c .

Remark 3.2.3 Every polynomial functor is also a higher-order polynomial functor. If
a higher-order polynomial functor H is equivalent to a polynomial functor F (i.e. if
H(Y,X) = F (X) for all X and Y ) then the above pentagon collapses to the square 2.6
in Definition 2.6.1.

Example 3.2.4 Coalgebras of higher-order polynomial functors can be used to mod-
el classes of object-oriented languages with arbitrary method types. For the class of
neighbourhood points from the introduction one gets the following functor on Set.

NeighbourhoodPointIface(Y,X) =



R×R ×
(R×R −→ X) ×
(Y −→ bool) ×
(A −→ X) ×(
(A −→ Y )×R×R −→ (A −→ X)

)
Here, bool is the set of booleans, R is used for the set of the real numbers and A is the
set of addresses.
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A specific class, which realizes the interface of points, corresponds to a coalgebra
c : X //NeighbourhoodPointIface(X,X). We get the single methods as projections:

get xc = π1 ◦ c
get yc = π2 ◦ c
movec = π3 ◦ c
equalc = π4 ◦ c

register neighbourc = π5 ◦ c
move with neighboursc = π6 ◦ c

If d : Y //NeighbourhoodPointIface(Y, Y ) is another NeighbourhoodPointIface–coalgebra,
then a function f : X //Y is a neighbourhood-point morphism c //d precisely if for
all x, x′ ∈ X, r1, r2 ∈ R and e : A //X it holds that3

get xc(x) = get xd(f(x))

get yc(x) = get yd(f(x))

f
(
movec(x, r1, r2)

)
= moved(f(x), r1, r2)

equalc(x, x
′) = equald(f(x), f(x′))

f
(
register neighbourc(x, a)

)
= register neighbourd(f(x), a)

λa . f
(
move with neighboursc(x, e,r1, r2)(a)

)
=

move with neighboursd

(
f(x), (λa . f(e(a))), r1, r2

)
�

Proposition 2.6.2 (on page 55) can be extended to higher-order polynomial functors.
Note, that a natural transformation η : H +3K between two higher-order polynomial
functors H,K : Cop ×C //C is a collection of morphisms indexed by pairs: ηY,X :
H(Y,X) //K(Y,X). Its defining property is the commutation of the following diagram
for any two morphisms f and g:

Y X

f

��

H(Y,X)

H(g,f)

��

ηY,X // K(Y,X)

K(g,f)

��
V

g

OO

U H(V, U)
ηV,U // K(V, U)

Lemma 3.2.5 Let H and K be two higher-order polynomial functor. A natural transfor-
mation η : H +3K gives rise to a functor CoAlg(H) //CoAlg(K) by postcomposition.

3In the following equations I use currying and write move(x, r1, r2) instead of move(x)(r1, r2) to get
a better presentation.
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Proof As in the proof of Proposition 2.6.2 the main obligation is to show that H-
coalgebra morphisms are mapped to K coalgebra morphisms. The situation is as follows

X

f

��

c // H(X,X)

H(X,f)

%%KKKKKKKKKKKKKK

ηX,X // K(X,X)

K(X,f)

%%KKKKKKKKKKKKKK

H(X, Y )
ηX,Y // K(X,Y )

Y
d // H(Y, Y )

H(f,Y )

99ssssssssssssss ηY,Y // K(Y, Y )

K(f,Y )

99ssssssssssssss

(1)

(2)

(3)

Parts (2) and (3) commute by the naturality of η, part (1) commutes because f is a
H–coalgebra morphism. Thus, the outer pentagon commutes. �

3.3. Invariants and Bisimulations for Higher-Order Polynomial
Functors

Bisimulations are used in various process calculi (for example in (Milner, 1989)) and in
the field of coalgebras to capture behavioural equivalence. Invariants are predicates on
the state space of a coalgebra that are maintained by the coalgebra. That is, starting
from a state in the invariant, all successor states that can be obtained via the coal-
gebra are in the invariant predicate again. As explained in Section 2.6 there exist two
approaches to define bisimulations and invariants. I first follow the Hermida/Jacobs ap-
proach and extend predicate and relation lifting from (Hermida and Jacobs, 1998) to
higher-order polynomial functors. At the end of this section I compare the notion of
Aczel/Mendler bisimulation with Hermida/Jacobs bisimulation. It turns out that both
approaches yield different notions of bisimulation and invariant. The Aczel/Mendler ap-
proach yields a definition of bisimulation that does not capture the intuitive notion of
behavioural equivalence: It is possible to construct an Aczel/Mendler bisimulation R,
which relates two states, such that their successor states are not related by R and may
give different observations (see Example 3.3.11 below).

Consider a fibration
E
↓p
B

. Predicate and relation lifting take a higher-order polynomial

functor on the base category H : Bop ×B //B and transform it into a functor on the
total category Pred(H) : Eop ×E //E (or Rel(H) : Rel(E)op ×Rel(E) //Rel(E) for

relation lifting, where Rel(E) is the category of relations obtained from
E
↓p
B

). This new

functor on the total category is obtained by simply substituting in H the bicartesian
structure of the total category for the bicartesian structure of the base. For constants
one uses truth (for predicate lifting) and equality (for relation lifting). For a polynomial
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functor F the predicate and the relation lifting of F is (co-)fibred over F under additional
assumptions on B and on E. This is no longer the case for higher-order polynomial
functors.

For the reasons explained in the beginning of Section 2.4 I switch now to the concrete

fibrations
Pred
↓

Set
and

Rel
↓

Set
. Functors that appear in the following are functors on the

category Set, if not otherwise mentioned.

Definition 3.3.1 (Predicate and Relation lifting) Let Q ⊆ Y and P ⊆ X be two
predicates, S ⊆ V × Y and R ⊆ U × X two relations, and H a higher-order poly-
nomial functor. Its predicate lifting Pred(H)(Q,P ) ⊆ H(Y,X) and its relation lifting
Rel(H)(S,R) ⊆ H(V, U)×H(Y,X) are defined by induction on the structure of H:

• If H(Y,X) = X, then

Pred(H)(Q,P ) = P

Rel(H)(S,R) = R

• If H(Y,X) = A (for A a constant set), then

Pred(H)(Q,P ) = >A = (A ⊆ A)

Rel(H)(S,R) = Eq(A) =
(
{(a, a) | a ∈ A} ⊆ A× A

)
• If H(Y,X) = H1(Y,X)×H2(Y,X), then

Pred(H)(Q,P ) = Pred(H1)(Q,P ) ×P Pred(H2)(Q,P )

=
{
(x, y) | Pred(H1)(Q,P )(x) and Pred(H2)(Q,P )(y)

}
Rel(H)(S,R) = Rel(H1)(S,R) ×R Rel(H2)(S,R)

=
{
((x1, x2), (y1, y2)) | Rel(H1)(S,R)(x1, y1)

and Rel(H2)(S,R)(x2, y2)
}

• If H(Y,X) = H1(Y,X) +H2(Y,X), then

Pred(H)(Q,P ) = Pred(H1)(Q,P ) +P Pred(H2)(Q,P )

=
{
κ1 x | Pred(H1)(Q,P )(x)

}
∪
{
κ2 y | Pred(H2)(Q,P )(y)

}
Rel(H)(S,R) = Rel(H1)(S,R) +R Rel(H2)(S,R)

=
{
(κ1 x1, κ1 y1) | Rel(H1)(S,R)(x1, y1)

}
∪
{
(κ2 x2, κ2 y2) | Rel(H2)(S,R)(x2, y2)

}
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• If H(Y,X) = H1(X, Y ) ⇒ H2(Y,X), then

Pred(H)(Q,P ) = Pred(H1)(P,Q) ⇒P Pred(H2)(Q,P )

=
{
f | f : H1(X,Y ) //H2(Y,X) such that

∀a ∈ H1(X, Y ) . Pred(H1)(P,Q)(a) implies Pred(H2)(Q,P )(f(a))
}

Rel(H)(S,R) = Rel(H1)(R,S) ⇒R Rel(H2)(S,R)

=
{
(f, g) | f : H1(U, V ) //H2(V, U) , g : H1(X, Y ) //H2(Y,X)

such that ∀a ∈ H1(U, V ), b ∈ H1(X, Y ) . Rel(H1)(R,S)(a, b)

implies Rel(H2)(S,R)(f(a), g(b))
}

Predicate and relation lifting for higher-order polynomial functors works on two argu-
ments. In Pred(H)(Q,P ) (respectively Rel(H)(S,R)) the first argument Q (respectively
S) is used for the contravariant occurrences of Y inH(Y,X). The second argument P (re-
spectively R) is for the covariant argument of H. The effect is the following: An element
t ∈ H(Y,X) is in Pred(H)(Q,P ) if Q and P hold pointwise on the contravariant and
covariant positions in t. For an additional s ∈ H(V, U) we have Rel(H)(S,R)(s, t) only
if s and t have the same structure. This means, that if H = H1 +H2, then s and t come
either both from the first component or both from the second one. Further Rel(H)(S,R)
requires S,R and equality to hold pointwise for the contravariant argument, covariant
argument and constants, respectively.

This definition of predicate and relation lifting is a conservative extension of Def-
inition 2.6.3 (on page 58). If H is equivalent to a polynomial functor F then, in the
liftings Pred(H)(Q,P ) and Rel(H)(S,R), the first arguments Q and S are never used.
Therefore, in this case, Pred(H)(Q,P ) = Pred(F )(P ) and Rel(H)(S,R) = Rel(F )(R).

I need the following result below.

Lemma 3.3.2 Let H be a higher-order polynomial functor.

1. Predicate and relation lifting are monotone, that is, the definitions of Pred(H)
and Rel(H) extend to functors: For suitable predicates Q,Q′, P, P ′ and relations
S, S ′, R,R′ we have

Q ⊆ Q′ and P ⊆ P ′ implies Pred(H)(Q′, P ) ⊆ Pred(H)(Q,P ′)

S ⊆ S ′ and R ⊆ R′ implies Rel(H)(S ′, R) ⊆ Rel(H)(S,R′)

2. Predicate lifting commutes with truth:

Pred(H)(>Y ,>X) = >H(Y,X)

3. Relation lifting commutes with equality:

Rel(H)(Eq(X),Eq(Y )) = Eq(H(X,Y ))
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4. For two relations S ⊆ U ×V and R ⊆ X ×Y relation lifting commutes with (−)op

in the following sense:

Rel(H)(Sop, Rop) = ( Rel(H)(S,R) )op

Proof By induction on the structure of H using Lemmas 2.4.5, 2.4.7, 2.4.8, and 2.4.11.
�

It is impossible to obtain similar results for the commutation of predicate and relation
lifting with ∧,∨ or relational composition. This fails because it is not possible to obtain
equations instead of the subset relations in the Lemmas 2.4.9, 2.4.10, and 2.4.12. The
lifting of higher-order polynomial functors is also not fibred, because this would require
the lifting to be cofibred, which fails for the exponent (see Example 2.4.16).

Definition 3.3.3 (Hermida/Jacobs Invariant and Bisimulation)
LetH be a higher-order polynomial functor and c : X //H(X,X) and d : Y //H(Y, Y )
be two H–coalgebras.

• A predicate P ⊆ X is a Hermida/Jacobs H–invariant for c if for all x ∈ X

P (x) implies Pred(H)(P, P )(c(x))

• A relation R ⊆ X × Y is a Hermida/Jacobs H–bisimulation for c and d if for all
x ∈ X, y ∈ Y

R(x, y) implies Rel(H)(R,R)(c(x), d(y))

Note that one could equivalently formulate the definition as follows: Let Ĥ be
the functor defined as Ĥ(Y,X) = Y ⇒ H(Y,X), then P is a H–invariant for c if

Pred(Ĥ)(P, P )(c). And R is a H–bisimulation for c and d if Rel(Ĥ)(R,R)(c, d) holds.
Another variation to express the same thing uses the substitution functor for the coal-
gebra c: The predicate P is an invariant if P ⊆ c∗ Pred(H)(P, P ) holds. Similarly for
bisimulations.

The preceding definition is a straightforward generalisation of Definition 2.6.5 (on
page 60). We will see in the following that the notion of Hermida/Jacobs invariant
is not optimal both with respect to its properties and with respect to the intuition
about invariance. Therefore in the context of ccsl the slightly different notion of strong
invariant is used. Strong invariants are discussed in Section 3.4.6 (starting on page 103).

In the following I analyse the properties of Hermida/Jacobs invariants and bisimu-
lations for higher-order polynomial functors. The term invariant (without qualification)
denotes always a Hermida/Jacobs invariant from the preceding definition, similarly the
term bisimulation abbreviates Hermida/Jacobs bisimulation.
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Example 3.3.4 As example I describe invariants and bisimulations for neighbourhood
points. Let

c : X //NeighbourhoodPointIface(X,X)

and

d : Y //NeighbourhoodPointIface(Y, Y )

be two point coalgebras. A predicate P ⊆ X is an invariant for c if P (x) implies all of
the following points.

• ∀r1, r2 ∈ R . P
(
movec(x, r1, r2)

)
• ∀a ∈ A .P

(
register neighbourc(x, a)

)
• if e is a plane (i.e., a function A //X ) such that ∀a ∈ A .P (e(a)) then it must

hold that ∀r1, r2 ∈ R .∀a ∈ A .P
(
move with neighbours(x, e, r1, r2) (a)

)
Note that a successor state of the move with neighbours is not required to be in the

invariant P if only one point that can be reached via the second argument e is outside of
P . This is because in the definition of invariant the co– and the contravariant arguments
of predicate lifting are instantiated with the same predicate. Depending on the actual
application it might better fit the intuition if, regardless of the argument e, all successor
states of the move with neighbours method are required to be within P . The notion of
strong invariant fulfils this latter criterion (see Section 3.4.6 below).

Let us now look under which condition a relation R ⊆ X×Y forms a bisimulation for
neighbourhood points. First it is necessary to lift a relation to the type of planes, which
are the second argument of the move with neighbour method: Let me call two planes
e1 : A //X and e2 : A //Y R–related, if for all a ∈ A it holds that R(e1(a), e2(a)).

4

Now the relation R ⊆ X × Y is a bisimulation for neighbourhood points if for all x ∈ X
and y ∈ Y with R(x, y) all of the following items hold:

• get xc(x) =R get xd(y)

• get yc(x) =R get yd(y)

• ∀r1, r2 ∈ R . R
(
movec(x, r1, r2), moved(y, r1, r2)

)
• ∀x′ ∈ X, y′ ∈ Y .R(x′, y′) implies equalc(x, x

′) =bool equald(y, y
′)

• ∀a ∈ A .R
(
register neighbourc(x, a), register neighbourd(y, a)

)
4The informal notion of (−)–related functions makes relation lifting readable for higher-order polyno-

mial functors in this and in following examples. This informal notion is always an abbreviation for
the relation lifting of an ingredient functor in the current context. Here, two planes are R–related
precisely if they are related by Rel(A ⇒ X)(R,R) = {(e1, e2) | ∀a : A .R(e1(a), e2(a))}
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• For allR–related planes e1 : A //X and e2 : A //Y and all r1, r2 ∈ R also the two
results move with neighboursc(x, e1, r1, r2) and move with neighboursd(y, e2, r1, r2)
are R–related. �

Remark 3.3.5 Sometimes the powerset functor is defined as P(X) = X ⇒ bool. This
way the powerset functor could be considered as a higher-order polynomial functor.
However the notions of bisimulation and invariant that one gets for the functorX ⇒ bool
are not appropriate to model nondeterminism. As liftings one gets

Pred(X � //X ⇒ bool)(P ) = >X⇒bool

Rel(X � //X ⇒ bool)(R) = {(f, g) | xR y implies f x = g x}

So for a coalgebra c : X //X ⇒ bool every predicate is an invariant. And a relation R
is a bisimulation if for all x, x′, y, and y′ it holds that

xR y ∧ x′Ry′ implies x′ ∈ c(x) if and only if y′ ∈ c(y)

(here I consider c(x) as the set {x′ | c(x)(x′) = >}). Note that the Aczel/Mendler
approach yields the same result, because Proposition 3.4.20 (on page 102 below) applies
to the functorX ⇒ bool. The problem is thatX ⇒ bool gives the contravariant powerset
functor, but in order to model nondeterminism one needs the covariant powerset functor
(compare Section 3.6 of (Rutten, 2000)).

To model nondeterminism (Jacobs, 1995) suggests the following liftings:

Pred(P)(P ) = {Q ⊆ X | Q ⊆ P}
Rel(P)(R) = {(Q ⊆ X,Q′ ⊆ Y ) | (∀x ∈ Q . ∃y ∈ Q′ . xR y) ∧

(∀y ∈ Q′ .∃x ∈ Q . xR y)

These liftings behave in the expected way.

It is now the question whether bisimulations for higher-order polynomial functors
enjoy similar properties like bisimulations for weak pullback preserving endofunctors do.
For the more general case of higher-order polynomial functors, the possibility to specify
arbitrary functional arguments and the contravariant nature of the function type cause
problems. So there are only a few positive results.

Proposition 3.3.6 Let H be a higher-order polynomial functor and c : X //H(X,X)
and d : Y //H(Y, Y ) be two H–coalgebras.

1. The truth predicate >X is an invariant for c.

2. The equality relation Eq(X) is a bisimulation for c.

3. If R ⊆ X × Y is a bisimulation for c and d, then Rop is a bisimulation for d and
c.
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Proof Apply Lemma 3.3.2. �

Fact 3.3.7 None of the following points hold in general for coalgebras of higher-order
polynomial functors.

1. bisimulations and invariants are closed under union and intersection,

2. the composition of two bisimulations is a bisimulation,

3. the graph of a morphism is a bisimulation,

4. the image
∐

f > of a morphism f is an invariant,

5. invariants correspond to subcoalgebras,

6. the relation
∐

δ P is a bisimulation for an invariant P ,

7. the predicate
∐

π1
R is an invariant for a bisimulation R,

8. the relation π1
∗ P ∧ R is a bisimulation for an invariant P and a bisimulation R,

9. and finally the kernel of a morphism is a bisimulation.

For all these facts I constructed counterexamples in the pvs formalisation of this chapter.
Here I include only some of them: See the following Example 3.3.8 and Example 3.3.9 for
Item 1, Example 3.4.17 (on page 101) for Item 4, Example 3.4.19 (on page 101) for Item 6,
Example 3.4.12 (on page 99) for Item 7, and Example 3.4.15 (on page 100) for Item 8.
It is worth remarking that the examples for Items (2)–(9) involve the same functor T of
the following example. For the union of bisimulations the functor (Y,X) � //Y ⇒ bool
suffices, for the union of invariants one needs (Y,X) � //Y ⇒ X .

Example 3.3.8 This example shows two bisimulations such that their intersection is
not a bisimulation. Consider the higher-order polynomial functor

T (Y,X)
def
= (X ⇒ Y ) ⇒ X

For two functions f : U //X and g : Y //V its morphism part is

T (g, f) : T (V, U) //T (Y,X)
= (f ⇒ g) ⇒ f

h : (U ⇒ V ) //U 7−→ λk : X //Y . (f ◦ h)(g ◦ k ◦ f)

To describe the relation lifting for T it is useful to define the auxiliary notion of (R,S)–
related functions5 : For two relations R ⊆ X × Y, S ⊆ U × V the functions a : X //U

5Two functions are (R,S)–related if they are related by Rel(Y ⇒ X)(R,S).
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and b : Y //V are (R,S)–related, if for all x ∈ X and y ∈ Y it holds that R(x, y)
implies S(a(x), b(y)).

Assuming again two relations S ⊆ U × V and R ⊆ X × Y the relation lifting for T
is then

Rel(T )(S,R) ⊆ T (U,X)× T (V, Y )
=

{
(f, g) | f : (X ⇒ U) //X, g : (Y ⇒ V ) //Y such that
for all (R,S)–related functions a and b : R

(
f(a), g(b)

) }
The functor T is trivial in the sense that it does not allow any observations. Therefore
there exists a final T–coalgebra (given by the only function 1 //T (1)) and for any T–
coalgebra Z //T (Z) the universal relation Z×Z is the greatest bisimulation. However,
the argument below (and in all examples that use the functor T ) applies also to nontrivial
higher-order polynomial functors like T ′(Y,X) = (X ⇒ Y ) ⇒ (X × A).

Take now two sets A
def
= {a1, a2, a3, a4}, B

def
= {b1, b2, b3, b4} and the relations R

def
=

{(a1, b1), (a2, b2)} and S
def
= {(a1, b1), (a3, b3)}. Define the following functions:

f : A //A

= λa : A . if a = a1 then a1 else a4 endif

g : B //B

= λb : B . if b = b1 then b1 else b4 endif

c : A //(A⇒ A) ⇒ A

= λa : A . λh : A //A . if h = f then a4 else a1 endif

d : B //(B ⇒ B) ⇒ B

= λb : B . λk : B //B . if k = g then b4 else b1 endif

Obviously, the functions f and g are neither (R,R)–related nor (S, S) related. However,
they are (R ∩ S,R ∩ S)–related and (c(a1)(f), d(b1)(g)) /∈ R ∩ S. That is why R and S
are bisimulations for c and d, but R ∩ S is not.

The first projections of R and S, the predicates
∐

π1
R = {a1, a2} and

∐
π1
S =

{a1, a3} are both invariants for c, but there intersection is not. �

Example 3.3.9 In this example I consider the functor

K(Y,X)
def
= Y ⇒ bool

where bool
def
= {⊥,>} is the set of booleans. For this functor I construct a K–coalgebra

for which the union of two bisimulation is not a bisimulation and for which there is also
no greatest bisimulation. For a function g : Y //V (the covariant argument position is
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ignored) the morphism part of K is

K(g,X) : K(V,X) //K(Y,X)
= (g ⇒ idbool)

h : V //bool 7−→ h ◦ g

Assume two relations S ⊆ U × V and R ⊆ X × Y . The relation lifting for K is

Rel(K)(S,R) ⊆ K(U,X)×K(V, Y )
=

{
(f, g) | f : U //bool , g : V //bool such that
∀u ∈ U, v ∈ V . S(u, v) implies f(u) = g(v)

}
Define the following coalgebra on the state space A = {a1, a2}.

c : A //K(A,A)
= λx : A . λy : A . if x = y then ⊥ else > endif

Define the relation R ⊆ A× A
def
= {(a1, a2), (a2, a1)}. It is easy to check that R is a K–

bisimulation for c. Also the equality relation Eq(A) = {(a1, a1), (a2, a2)} is a bisimulation
for c. However, the union R ∪ Eq(A) is not. Both bisimulations are maximal: if S is
another K–bisimulation for c then either S ⊆ R or S ⊆ Eq(A). So there is no greatest
bisimulation for c.

Note that R is on the edge of (if not behind) an intuitive notion of behavioural equiv-
alence. The Sections 3.4.7 and 3.5 consider stronger notions of bisimulation (excluding
R) that behave more nicely with respect to union. �

In the remainder of this subsection I define invariants and bisimulations, following
the approach of Aczel and Mendler. It will turn out, that this gives different notions of
invariance and bisimulation (compared to Definition 3.3.3).

Definition 3.3.10 (Aczel/Mendler bisimulations and invariants)

Let c : X //H(X,X) and d : Y //H(Y, Y ) be coalgebras for a higher-order polynomial
functor H.

• A predicate P ⊆ X is called an Aczel/Mendler invariant (for c) if there exists a
subcoalgebra on P , that is if there is a coalgebra p : P //H(P, P ) such that the
inclusion ι : P //X is a H–coalgebra morphism p //c (i.e., the right diagram
below commutes).

• A relation R ⊆ X×Y is called an Aczel/Mendler bisimulation (for c and d) if there
exists a coalgebra r : R //H(R,R) such that the projections π1 : R //X and
π2 : R //Y areH–coalgebra morphisms (i.e., if the left diagram below commutes).
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X
c // H(X,X)

H(π1,X)

((QQQQQQQQQQQQQ

H(R,X)

R
r //

π1

OO

π2

��

H(R,R)
H(R,π1)

66mmmmmmmmmmmmm

H(R,π2)

((QQQQQQQQQQQQQ

H(R, Y )

Y
d // H(Y, Y )

H(π2,Y )

66mmmmmmmmmmmmm

P
p //

ι

��

H(P, P )
H(X,ι)

''PPPPPPPPPPP

H(X,P )

X
c // H(X,X)

H(ι,X)
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Example 3.3.11 This examples presents a relation that is an Aczel/Mendler bisimula-
tion but not a Hermida/Jacobs bisimulation. Consider the functor T from Example 3.3.8.

Take for a concrete state space the set M
def
= {m1,m2} and let R be the relation that

relates only m1 with itself: R
def
= {(m1,m1)}. Define the following T–coalgebras

c : M //(M ⇒M) ⇒M

= λx : M .λa : M //M . if a = idM then m2 else m1 endif

r : R //(R⇒ R) ⇒ R

= λr : R . λr′ : R //R . (m1,m1)

The question is now whether R is a bisimulation for c (to instantiate Definition 3.3.10
I take X = Y = M and c = d). Intuitively we should expect, that R is not a T–
bisimulation for c, because for the state m1 we get c(m1)(idM) = m2. So if (m1,m1) ∈ R
then R should also contain the pair (m2,m2), because a bisimulation should be closed
under taking successor states. And indeed, since idM is (R,R)–related with itself, we
find that (c(m1), c(m1)) /∈ Rel(T )(R,R) and R is not a Hermida/Jacobs bisimulation.

Checking for the Aczel/Mendler bisimulation we find, that

T (π1,M) ◦ c : M //(M ⇒ R) ⇒M
= λx : M .λa : M //R .m1

and r is indeed a coalgebra fulfilling the condition of Definition 3.3.10.
This shows that the Aczel/Mendler definition for bisimulation does not capture the

basic intuition about bisimulations: it is possible to relate states, which are not be-
haviourally equivalent. �

Example 3.3.12 This is an example for the converse situation: I present a relation
that is a Hermida/Jacobs bisimulation but not an Aczel/Mendler bisimulation. Consider
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again the functor T from Example 3.3.8. This time take M
def
= {m1,m2,m3,m4,m5} and

consider the relation R
def
= {(m1,m1), (m1,m2), (m3,m4)}. Define the following functions:

f : M //R

= λx : M . if x = m1 then (m3,m4) else (m1,m1) endif

π2 ◦ f : M //M

= λx : M . if x = m1 then m4 else m1 endif

c : M //(M ⇒M) ⇒M

= λx : M .λa : M //M .m1

d : M //(M ⇒M) ⇒M

= λx : M .λa : M //M . if a = π2 ◦ f then m5 else m1 endif

Consider the composition π2 ◦ f . There is no function g : M //M such that g is
(R,R)–related to π2 ◦ f , because this would require both g m1 = m3 and g m1 = m1.

The question is again, if we should consider R as a bisimulation for the coalgebras
c and d. Both coalgebras are clearly different on input π2 ◦ f , but because there is
no (R,R)–related function to π2 ◦ f , we find that (c(x), d(y)) ∈ Rel(T )(R,R) for all
(x, y) ∈ R. So R is a Hermida/Jacobs bisimulation.

For the Aczel/Mendler bisimulation we have to show, that there exists a function
r : R //(R⇒ R) ⇒ R such that for instance

(T (R, π2) ◦ r)(m1,m1) = (T (π2,M) ◦ d)(m1)

Using extensionality we derive, that for all functions a : M //R it must hold that

π2

(
r(m1,m1)(a ◦ π2)

)
= d(m1)(π2 ◦ a)

This is impossible for f as defined at the beginning of this example, because we have
d(m1)(π2 ◦ f) = m5 and further r(m1,m1)(f ◦ π2) ∈ R and there is no pair in R that
contains m5.

One can argue, whether R as defined in this example should really be a bisimu-
lation for c and d. The relevance of this example is, that it shows that the notion of
Hermida/Jacobs bisimulation does not entail the notion of Aczel/Mendler bisimulation.

�

Higher-order polynomial functors can model arbitrary signatures over a type theo-
ry with products, coproducts and exponents. Thereby higher-order polynomial functors
solve also the problem of binary methods in coalgebraic specification. The generality
achieved is far beyond of what is necessary to model class interfaces of Eiffel (Meyer,
1992) or Java (Gosling et al., 1996). Only object-oriented extensions of functional pro-
gramming languages (e.g., ocaml (Leroy et al., 2001)) require the full modelling power
of higher-order polynomial functors.
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The definitions for the terms invariant and bisimulation can be rather straightforward
extended from the case of polynomial functors to higher-order polynomial functors. So
higher-order polynomial functors and coalgebras for higher-order polynomial functors are
a conservative extension of polynomial functors and coalgebras for polynomial functors,
respectively. The price for the generality of higher-order polynomial functors is high:
Almost none of well known properties from Section 2.6 for bisimulations and invariants
for coalgebras of polynomial functors holds for the more general case. Counter examples
can be constructed relatively easy.

3.4. Extended Polynomial Functors

The previous section showed that coalgebras for higher-order polynomial functors do
not enjoy the same nice properties of coalgebras for polynomial functors. This section
defines the class of extended polynomial functors that are a subclass of the higher-
order polynomial functors. The idea of extended polynomial functors is based on the
observation, that almost all of the counterexamples of the preceding section involve the
functor T from Example 3.3.8. The subclass of extended polynomial functors restricts
the exponents that can occur in the functors thereby excluding the functor T . Then I
can prove many familiar results.

Definition 3.4.1 (Extended polynomial functors) Let C be a bicartesian closed
category. A functor G : Cop ×C //C is called extended polynomial if it is built accord-
ing to the grammar

G(Y,X) =


X
A
G1(Y,X)×G2(Y,X)
G1(Y,X) +G2(Y,X)
G1(A

′, Y ) ⇒ G2(Y,X)

where A,A′ are arbitrary objects of C and G1 and G2 are previously defined extended
polynomial functors. The morphism part is defined in the obvious way:

G(g, f) =


f
idA

G1(g, f)×G2(g, f)
G1(g, f) +G2(g, f)
G1(idA′ , g) ⇒ G2(g, f)

if G(Y,X) =


X
A
G1(Y,X)×G2(Y,X)
G1(Y,X) +G2(Y,X)
G1(A

′, Y ) ⇒ G2(Y,X)

The only (but crucial) difference compared to higher-order polynomial functors is
the clause for the exponent. This accounts for the following fact: If G is an extended
polynomial functor then, for each object A, there is a polynomial functor F such that
F (X) = G(A,X).
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The functor T from Example 3.3.8 is not an extended polynomial functor. However,
the functor NeighbourhoodPointIface (Example 3.2.4) fits into Definition 3.4.1. For object-
oriented specification there is the following rule of thumb: A class signature gives rise to
an extended polynomial functor, if all its methods have first order arguments (like the
methods equal or move), or if for every functional argument it is the case, that Self does
only occur in strictly positive positions in the type of the argument (like in the method
move with neighbours).

Because every extended polynomial functor is also a higher-order polynomial func-
tor, extended polynomial functors inherit the definitions of coalgebra (Definition 3.2.2),
relation lifting (Definition 3.3.1), and bisimulation (Definition 3.3.3) from higher-order
polynomial functors. Because of the restricted exponent these notions behave much more
nicely.

The remainder of this section lists many results about coalgebras of extended poly-
nomial functors. Basically all items from Fact 3.3.7 that have been answered negatively
for higher-order polynomial functors can be answered positively for extended polynomi-
al functors with only one exception: Invariants and bisimulations are not closed under
union. I first concentrate on invariants and predicate lifting, next I turn to bisimulations
and relation lifting. In Subsection 3.4.3 I consider bisimulations and coalgebra mor-
phisms and in 3.4.4 I investigate the interplay of bisimulations and invariants. It follows
a subsection on the relation of the Aczel/Mendler and the Hermida/Jacobs approach
for extended polynomial functors. The last two subsections consider modifications in the
definitions of invariant and bisimulation to obtain results about the union of invariants
and the union of bisimulations, respectively.

3.4.1. Predicate Lifting and Invariants

Lemma 3.4.2 Let G be an extended polynomial functor and assume two families of
predicates (Pi ⊆ X)i∈I and (Qi ⊆ Y )i∈I . Then∧

i Pred(G)(Qi, Pi) ⊆ Pred(G)(
∧

iQi,
∧

i Pi)

Proof The proof method that I use for this result is quite important, it will be used for
many other results in the following. First, I prove for polynomial functors F by induction
on their structure the slightly stronger result∧

i Pred(F )(Pi) = Pred(F )(
∧

i Pi) (∗)

For the induction step I use Lemma 2.4.9 (1), for instance in case F = A⇒ F1:∧
i Pred(A⇒ F1)(Pi) =

∧
i

(
>A ⇒P Pred(F1)(Pi)

)
= >A ⇒P

∧
i Pred(F1)(Pi) by 2.4.9 (1)

= >A ⇒P Pred(F1)(
∧

i Pi) by Ind. Hyp.

= Pred(A⇒ F1)(
∧

i Pi)
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Now I prove the main result with induction on the structure of extended polynomial
functors. In the induction steps I use Lemma 2.4.9 (1), 2.4.5 (1), and (∗). I demonstrate
the case G = G1(A, Y ) ⇒ G2(Y,X). Assume, that the polynomial functor F equals
G1(A,−). ∧

i Pred(F ⇒ G2)(Qi, Pi)

=
∧

i

(
Pred(F )(Qi) ⇒P Pred(G2)(Qi, Pi)

)
⊆

∧
i Pred(F )(Qi) ⇒P

∧
i Pred(G2)(Qi, Pi) by 2.4.9 (1)

= Pred(F )(
∧

iQi) ⇒P

∧
i Pred(G2)(Qi, Pi) by (∗)

⊆ Pred(F )(
∧

iQi) ⇒P by Ind. Hyp. and 2.4.5 (1)

Pred(G2)(
∧

iQi,
∧

i Pi)

= Pred(F ⇒ G2)(
∧

iQi,
∧

i Pi) �

Proposition 3.4.3 For extended polynomial functors invariants are closed under arbi-
trary intersections.

Proof Assume a collection (Pi)i∈I of invariants and also that x ∈
∧

i Pi. Then I have
c(x) ∈

∧
i Pred(G)(Pi, Pi) and with the previous lemma c(x) ∈ Pred(G)(

∧
i Pi,

∧
i Pi)

follows. Thus
∧

i Pi is indeed an invariant. �

The preceding proposition implies that all invariants for a given coalgebra form a
complete lattice. So there exists a join operation on invariants that can be characterised
as follows

P1 t P2 =
∧
{Q | Q is an invariant and P1 ⊆ Q and P2 ⊆ Q}

In general P1 ∨ P2 is a proper subset of P1 t P2 for two invariants P1 and P2. Note that
the greatest invariant contained in some predicate need not exist (because the join of
all invariants contained in a predicate P might be greater than P ). Greatest invariants
are important in ccsl for the semantics of the infinitary modal operators always and
eventually, see Section 4.5.2 (starting on page 173). ccsl uses therefore the notion
of strong invariant that overcomes the just mentioned problems with Hermida/Jacobs
invariants, see Subsection 3.4.6.

Let me continue to discuss the properties of Hermida/Jacobs invariants. For extended
polynomial functors invariants give rise to subcoalgebras and vice versa. Technically I
derive this result from Proposition 3.4.20, therefore the corresponding proposition is
delayed until page 102.

Lemma 3.4.4

1. Predicate lifting for polynomial functors F is cofibred:

Pred(F )(
∐

f P ) =
∐

F (f) Pred(F )(P )

for all predicates P ⊆ X and functions f : X //Y .
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2. Predicate lifting for extended polynomial functors G is fibred:

Pred(G)(
∐

g Q, f
∗ P ) = G(g, f)∗ Pred(G)(Q,P )

for all predicates Q ⊆ U, P ⊆ Y , and functions g : U //V , f : X //Y .

Proof First I prove (1) by induction on the structure of polynomial functors and use
Lemma 2.4.17 (1) and (2). Let for instance F = A ⇒ F1 be a polynomial functor and
assume a suitable predicate P and a function f , then

Pred(F )(
∐

f P ) = >A ⇒P Pred(F1)(
∐

f P )

= >A ⇒P

∐
F1(f) Pred(F1)(P ) by Ind. Hyp.

=
∐

A⇒F1(f)

(
>A ⇒P Pred(F1)(P )

)
by 2.4.17 (2)

=
∐

F (f) Pred(F )(P )

Now I prove (2) by induction on the structure of extended polynomial functors. In the
induction steps I use (1) and Lemma 2.4.15 (1). For instance if G = F ⇒ G1 for a
polynomial functor F , then

Pred(G)(
∐

g Q, f
∗ P )

= Pred(F )(
∐

g Q) ⇒P Pred(G1)(
∐

g Q, f
∗ P )

=
∐

F (g) Pred(F )(Q) ⇒P Pred(G1)(
∐

g Q, f
∗ P ) by (1)

=
∐

F (g) Pred(F )(Q) ⇒P G1(g, f)∗ Pred(G1)(Q,P ) by Ind. Hyp.

= (F (g) ⇒ G1(g, f))∗
(
Pred(F )(Q) ⇒P Pred(G1)(Q,P )

)
by 2.4.15 (1)

= G(g, f)∗ Pred(G)(Q,P ) �

3.4.2. Relation Lifting and Bisimulations

I turn now to properties of relation lifting and bisimulations for extended polynomial
functors.

Lemma 3.4.5 Let G be an extended polynomial functor.

1. Let I be an arbitrary nonempty index set and assume two indexed collections (Ri ⊆
X × Y )i∈I and (Si ⊆ U × V )i∈I of relations. Then we have:∧

i Rel(G)(Si, Ri) ⊆ Rel(G)(
∧

i Si,
∧

iRi)

2. Assume now relations R1 ⊆ X × Y, R2 ⊆ Y × Z, S1 ⊆ U × V and S2 ⊆ V ×W ,
then:

Rel(G)(S1, R1) ◦ Rel(G)(S2, R2) ⊆ Rel(G)(S1 ◦ S2, R1 ◦ R2)
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Proof I use the same proof method as before. For (1) I first prove with the help of
Lemma 2.4.9 (2) for polynomial functors F∧

i Rel(F )(Ri) = Rel(F )(
∧

iRi) (∗)

by induction on their structure. For instance if F (X) = A⇒ F1(X) then∧
i Rel(A⇒ F1)(Ri) =

∧
i

(
Eq(A) ⇒R Rel(F1)(Ri)

)
= Eq(A) ⇒R

∧
i Rel(F1)(Ri) by 2.4.9 (2)

= Eq(A)⇒R Rel(F1)(
∧

iRi) by Ind. Hyp.

= Rel(A⇒ F1)(
∧

iRi)

For the result 3.4.5 (1) I do induction on the structure of G. To apply the induction
hypothesis I additionally need Lemma 2.4.5 (2). Again I show the most difficult induction
step for G = F ⇒ G1 with a polynomial functor F in detail.∧

i Rel(F ⇒ G1)(Si, Ri)

=
∧

i

(
Rel(F )(Si) ⇒R Rel(G1)(Si, Ri)

)
⊆

∧
i Rel(F )(Si) ⇒R

∧
i Rel(G1)(Si, Ri) by 2.4.9 (2)

= Rel(F )(
∧

i Si) ⇒R

∧
i Rel(G1)(Si, Ri) by (∗)

⊆ Rel(F )(
∧

i Si) ⇒R Rel(G1)(
∧

i Si,
∧

iRi) by Ind. Hyp. and 2.4.5 (2)

= Rel(F ⇒ G1)(
∧

i Si,
∧

iRi)

For (2) I use the same proof method: Using Lemma 2.4.12 I first establish an equality
for polynomial functors. I can then prove the main result by induction on the structure
of extended polynomial functors. �

Proposition 3.4.6 Bisimulations for extended polynomial functors are closed under
arbitrary nonempty intersection and composition.

Note, that bisimulations for extended polynomial functors are not closed under union
in general. Different to invariants, bisimulations do not form a complete lattice. There
is no greatest bisimulation in general, see Example 3.3.9.

Proof Both proofs are very similar. I only do composition here. I have to show, that
for an arbitrary extended polynomial functor G, three G–coalgebras c : X //G(X,X),
d : Y //G(Y, Y ) , e : Z //G(Z,Z), a G–bisimulation R ⊆ X × Y for c and d and
a G–bisimulation S ⊆ Y × Z for d and e also their composition R ◦ S is a G–
bisimulation for c and e. With the definition of bisimulation it remains to show, that
for all x ∈ X, y ∈ Y, z ∈ Z such that R(x, y), S(y, z), Rel(G)(R,R)(c(x), d(y)) and
Rel(G)(S, S)(d(y), e(z)) it is also the case, that Rel(G)(R ◦ S,R ◦ S)(c(x), e(z)). This
follows directly from the previous Lemma. �
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3.4.3. Bisimulations and Coalgebra Morphisms

The next lemma leads to Proposition 3.4.8 about bisimulations and morphisms.

Lemma 3.4.7

1. The relation lifting for polynomial functors is cofibred: for a polynomial functor F ,
a relation R ⊆ X × Y and two functions f : X //X ′ , g : Y //Y ′ it holds that

Rel(F )(
∐

f×g R) =
∐

F (f)×F (g) Rel(F )(R)

2. The relation lifting for extended polynomial functors is fibred: for an extended poly-
nomial functor G, two relations S ⊆ U × V, R ⊆ X × Y and four functions
u : U //U ′ , v : V //V ′ , f : X ′ //X, g : Y ′ //Y it holds that

Rel(G)(
∐

u×v S, (f × g)∗R) =
(
G(u, f)×G(v, g)

)∗
Rel(G)(S,R)

Proof The proof is completely analogous to the proof of Lemma 3.4.4. �

Proposition 3.4.8 Let G be an extended polynomial functor and c : X //G(X,X) and
d : Y //G(Y, Y ) be two G–coalgebras. A function f : X //Y is a morphism between c
and d if and only if the graph of f given by graph(f) =

∐
idX×f Eq(X) is a bisimulation

for c and d.

Proof I have to show that for a function f : X //Y an arbitrary pair (c x, d(f x)) is
in Rel(G)(graph(f), graph(f)) if and only if G(X, f)(c x) = G(f, Y )(d(f x)). The latter
is equivalent with (c x, d(f x)) ∈ (G(X, f)×G(f, Y ))∗ Eq(G(X, Y )).

First recall the equivalence stated in Equation 2.7 (on page 64):∐
idX×f Eq(X) = (f × idY )∗ Eq(Y ) (∗)

Using this intermediate result I compute

Rel(G)(graph(f), graph(f))

= Rel(G)
(∐

idX×f Eq(X), (f × idY )∗ Eq(Y )
)

by (∗)
= (G(idX , f)×G(f, idY ))∗Rel(G)(Eq(X),Eq(Y )) by 3.4.7

= (G(idX , f)×G(f, idY ))∗ Eq(G(X, Y )) by 3.3.2 (3) �

The next result is an immediate consequence of the Proposition 3.4.8 and 3.4.6.

Proposition 3.4.9 The kernel of an arbitrary morphism between G–coalgebras is a
bisimulation for every extended polynomial functor G. �
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3.4.4. Bisimulations and Invariants

In this subsection I consider the constructions on bisimulations and invariants from
Subsection 2.6.5. The first lemma is towards the result that

∐
π1
R is an invariant if R

is a bisimulation.

Lemma 3.4.10 Let G be an extended polynomial functor and R and S be arbitrary
relations. Then ∐

π1
Rel(G)(S,R) ⊆ Pred(G)(

∐
π1
S,
∐

π1
R)

Proof By induction on the structure of G using Lemma 2.6.14 in the induction step for
the exponent. The induction steps of this proof have been formalised in pvs. �

Proposition 3.4.11 Assume two coalgebras c : X //G(X,X) and d : Y //G(Y, Y )
for an extended polynomial functor G. If R ⊆ X × Y is a bisimulation for c and d then
the predicate

∐
π1
R ⊆ X is an invariant for c.

Proof Along the lines of Proposition 2.6.15. �

Example 3.4.12 In this example I show that the previous result does not hold in
general for higher-order polynomial functors. I construct a bisimulation for the higher-
order polynomial functor T such that its first projection is not an invariant. The functor
T is defined in Example 3.3.8 on page 88.

Take X
def
= {x1, x2, x3, x4} and Y

def
= {y1, y2}. Define the function f and the T–

coalgebras c and d as follows.

f : X //X

= λx : X . if x = x2 then x3 else x1 endif

c : X //(X ⇒ X) ⇒ X

= λx : X .λh : X //X . if h = f then x4 else x1 endif

d : Y //(Y ⇒ Y ) ⇒ Y

= λy : Y . λg : Y //Y . y1

Similar to Example 3.3.12 the relation R
def
= {(x1, y1), (x2, y1), (x3, y2)} is a bisimulation

for c and d because there is no function that is (R,R)–related to f . Its first projection∐
π1
R = {x1, x2, x3} is not an invariant for c. �

The next lemma is towards the result that the intersection of an invariant P with a
bisimulation R, precisely R ∧ π∗1 P = {(x, y) | R(x, y) ∧ P (x)}, is a bisimulation again.

99



3. Coalgebras for Binary Methods

Lemma 3.4.13 Let G be an extended polynomial functor, S and R be arbitrary rela-
tions, and P and Q arbitrary predicates. Then

Rel(G)(S,R) ∧ π∗1
(
Pred(G)(Q,P )

)
⊆ Rel(G)(S ∧ π∗1 (Q), R ∧ π∗1 (P ))

Proof By induction on the structure of G using Lemma 2.6.16 in the induction step for
the exponent. The induction steps of this proof have been formalised in pvs. �

Proposition 3.4.14 Let c : X //G(X,X) and d : Y //G(Y, Y ) be two coalgebras for
an extended polynomial functor G. Assume that R ⊆ X × Y is a bisimulation for c and
d and that P ⊆ X is an invariant for c. Then the relation R ∧ π∗1 P is a bisimulation
for c and d.

Proof Along the lines of 2.6.17. �

Example 3.4.15 In this example I construct a bisimulation and an invariant for the
functor T from Example 3.3.8 such that their intersection is not a bisimulation. Let

X
def
= {x1, x2} and Y

def
= {y1, y2, y3}. Define the function g and the T–coalgebras c and d

as follows

g : Y //Y

= λy : Y . if y = y2 then y3 else y1 endif

c : X //(X ⇒ X) ⇒ X

= λx : X .λh : X //X . x1

d : Y //(Y ⇒ Y ) ⇒ Y

= λy : Y . λk : Y //Y . if k = g then y3 else y1 endif

The relation R
def
= {(x1, y1), (x2, y2)} is a bisimulation for c and d because there is no

function that is (R,R)–related to g. The predicate P
def
= {x1} is clearly an invariant for

c. Set now S
def
= R ∩ π∗1 P = {(x1, y1)}. There is function that is (S, S)–related to g,

namely idX , therefore S is not a bisimulation for c and d. �

With the previous two propositions and with Proposition 3.4.8 it is possible to derive
more results in the same way as for coalgebras of polynomial functors.

Proposition 3.4.16 Let G be an extended polynomial functor and let f : c //d be a
morphism between two coalgebras c : X //G(X,X) and d : Y //G(Y, Y ).

1. If P ⊆ X is an invariant for c then
∐

f P is an invariant for d.

2. If Q ⊆ Y is an invariant for d then f∗Q is an invariant for c.
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Proof Almost identical to the proof of 2.6.18. �

Example 3.4.17 This example shows a coalgebra morphism for the higher-order poly-
nomial functor T (see Example 3.3.8 on page 88) such that the image of this morphism

is not an invariant. Take X
def
= {x1, x2} and Y

def
= {y1, y2} and define the functions f and

g and the T–coalgebras c and d as follows.

f : X //Y

= λx : X . y1

g : Y //Y

= λy : Y . y

c : X //(X ⇒ X) ⇒ X

= λx : X .λh : X //X . x

d : Y //(Y ⇒ Y ) ⇒ Y

= λy : Y . λk : Y //Y . if k = g then y2 else y1 endif

The function f is a morphism c //d . The truth predicate >X is clearly an invariant for
c. However, the predicate

∐
f >X = {y1} is not an invariant for d. �

The next proposition is inspired by (Rutten, 2000).

Proposition 3.4.18 Let c : X //G(X,X) be a coalgebra of an extended polynomial
functor G. A predicate P ⊆ X is an invariant for c if and only if the diagonal on P , the
relation

∐
δ P , is a bisimulation for c.

Proof The proof is identical to 2.6.19. The if part follows from Proposition 3.4.11. The
only if part from Propositions 3.4.14 and 3.3.6 (2). �

Example 3.4.19 This example shows a coalgebra c for the higher-order polynomial
functor T (see example 3.3.8 on page 88) and an invariant P for c such that

∐
δ P is

not a bisimulation for c. Take X
def
= {x1, x2, x3} and define the functions f, g, and c as

follows.

f : X //X

= λx : X . if x = x3 then x1 else x

g : X //X

= λx : X . if x = x3 then x2 else x

c : X //(X ⇒ X) ⇒ X

= λx : X .λh : X //X . if h = f then x2 else x1
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The predicate P
def
= {x1, x2} is an invariant for c. Let R

def
=
∐

δ P = {(x1, x1), (x2, x2)}.
The functions f and g are (R,R)–related but c x1 f = x2 6= x1 = c x1 g. This is why R
is not a bisimulation for c. �

3.4.5. The Aczel/Mendler Approach Revisited

In this subsection I consider the relation of the Hermida/Jacobs and the Aczel/Mendler
approach for extended polynomial functors.

Proposition 3.4.20 For extended polynomial functors the notions of Aczel/Mendler
bisimulation and Hermida/Jacobs bisimulation coincide.

Proof Assume, that G is an extended polynomial functor, c : X //G(X,X) and d :
Y //G(Y, Y ) are two G–coalgebras, and R ⊆ X×Y is a relation. Consider the following
properties

∀x ∈ G(X,X), y ∈ G(Y, Y ), r ∈ G(R,R) .

G(R,π1)(r) = G(π1, X)(x) and G(R, π2)(r) = G(π2, Y )(y) (∗)
implies Rel(G)(R,R)(x, y)

∀x ∈ G(X,X), y ∈ G(Y, Y ),

Rel(G)(R,R)(x, y) implies ∃r ∈ G(R,R) . (†)
G(R, π1)(r) = G(π1, X)(x) and G(R, π2)(r) = G(π2, Y )(y)

If R is an Aczel/Mendler bisimulation, then (∗) implies that R is also a Hermida/Jacobs
bisimulation. If, for the other direction, R is a Hermida/Jacobs bisimulation, then (†)
implies that for each (a, b) ∈ R there exists a suitable element in G(R,R). It is therefore
possible to construct the needed function R //G(R,R) for the Aczel/Mendler bisimu-
lation using the Axiom of Choice.

It remains to show, that (∗) and (†) hold for all extended polynomial functors G and
all relations R. This can be done by induction on the structure of G. The base cases and
the induction steps for ×R and +R are easy computations. For the exponent, the Axiom
of Choice is needed again. For this proof, the predicates (∗) and (†) and the induction
steps have been formalised in pvs. �

Proposition 3.4.21 For extended polynomial functors the notions of Hermida/Jacobs
invariant and Aczel/Mendler invariant coincide.

Proof Let G be an extended polynomial functor, c : X //G(X,X) be a G–coalgebra

and P ⊆ X be a predicate. Set R
def
= Eq(X) ∧ π∗1 P , then by Frobenius we also have
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∐
π1
R = P . The projection π1 restricts to an isomorphism π1 : R //P . Consider now

the following diagram.

X
c // G(X,X)

G(ι,X) ''OOOOOOOOOOO ED
G(π1,X)

��

G(P,X)
∼=

OO

G(π1,X) ''OOOOOOOO

P

ι

OO

p // G(P, P )
∼=

OO

G(π1,P ) ''OOOOOOOO

G(P,ι)
77ooooooooooo

G(R,X)

G(R,P )

G(R,ι)
77ooooooooooo

R

∼=
π1

OO

r // G(R,R)

∼=oo

G(R,π1)
77oooooooo BC

G(R,π1)

OO

(∗)

(/).*-+MM

(/).*-+MM

(/).*-+MM

The outer pentagon commutes, if R is an Aczel/Mendler bisimulation with witness r.
The upper left pentagon (∗) commutes if P is an Aczel/Mendler invariant with witness
p. The arrows marked with ∼= are isomorphisms. The parts of the diagram marked with '!&"%#MM commute always because G is a functor.

Let us now tackle the proposition: It remains to show that there is an equivalence:
P is a Hermida/Jacobs invariant if and only if there exists p : P //G(P, P ) such that
(∗) commutes. Consider first the only if case:

P is a Hermida/Jacobs invariant
=⇒ by 3.4.14 R = Eq(X) ∧ π∗1 P is a Hermida/Jacobs bisimulation
=⇒ by 3.4.20 R is an Aczel/Mendler bisimulation (i.e., there exists

r : R //G(R,R) making the outer pentagon commute)
=⇒ by diagram chasing (∗) commutes if p = G(π1, P )−1 ◦ G(R, π1) ◦ r ◦ π1

−1

=⇒ P is an Aczel/Mendler invariant

The line of reasoning works also in the other direction: If we are given p : P //G(P, P )
such that (∗) commutes we set r = G(R, π1)

−1 ◦ G(π1, P ) ◦ p ◦ π1 and get that the outer
pentagon commutes. With 3.4.20 and 3.4.11 we get finally that P is a Hermida/Jacobs
invariant. �

3.4.6. Strong Invariants

In this subsection I present the notion of invariant that is used in the context of ccsl.

Definition 3.4.22 (Strong Invariant) Let H be a higher-order polynomial functor
and c : X //H(X,X) be an H–coalgebra. A predicate P ⊆ X is a strong H–invariant
for c if for all x ∈ X

P (x) implies Pred(H)(>X , P )(c(x))
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The only difference to Definition 3.3.3 is that the contravariant argument of Pred(H) is
now instantiated with >X instead of P . For polynomial functors there is no difference
between strong invariants and Hermida/Jacobs invariants. For higher-order polynomial
functors the difference can be explained intuitively as follows: Let bm : Self × Self //Self
be a binary method, P be a predicate on Self, and x ∈ P . A strong invariant requires
that bm(x, y) ∈ P for all possible y. The definition of Hermida/Jacobs invariant requires
bm(x, y) ∈ P only if y ∈ P .

Proposition 3.4.23

Every strong invariant is a Hermida/Jacobs invariant.

Proof Immediate from Lemma 3.3.2 (1). �

The interplay between strong invariants and bisimulations is a bit intricate. Propo-
sition 3.4.14 (R ∧ π∗1 P is a bisimulation) holds if one substitutes strong invariant for
invariant. Obviously, Proposition 3.4.11 (

∐
π1
R is an invariant) does not hold for strong

invariants. For Proposition 3.4.18 (P is an invariant if and only if
∐

δ P is a bisimulation)
the only–if part holds for strong invariants (by the preceding proposition). Obviously,
the if part is not true. Finally, considering Proposition 3.4.16 (1) one finds that the
predicate

∐
f P is an invariant for every strong invariant P , but

∐
f P might not be

a strong invariant. Item 2 of this proposition is clarified for strong invariants with the
following result.

Proposition 3.4.24 Let G be an extended polynomial functor and let f : c //d be a
morphism between two coalgebras c : X //G(X,X) and d : Y //G(Y, Y ). If Q ⊆ Y is
a strong invariant for d then f∗Q is a strong invariant for c.

Proof If Q is a strong invariant for d, then

Q ⊆ d∗ Pred(G)(>Y , Q) (∗)

It remains to show that f∗Q ⊆ c∗ Pred(G)(>X , f
∗Q). The derivation is as follows:

f∗Q ⊆ f∗ d∗ Pred(G)(>Y , Q) by (∗) and monotonicity of f∗

⊆ f∗ d∗ Pred(G)(
∐

f >X , Q)
∐

f >X ⊆ >Y

= f∗ d∗G(f, Y )∗ Pred(G)(>X , Q) by 3.4.4 (2)

= c∗G(X, f)∗ Pred(G)(>X , Q) G(f, Y ) ◦ d ◦ f = G(X, f) ◦ c
= c∗ Pred(G)(>X , f

∗Q) by 3.4.4 (2) �
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In the following I show that strong invariants are closed under arbitrary union and
intersection for higher-order polynomial functors and that they allow the construction of
the greatest strong invariant contained in some predicate (i.e., the strong invariants con-
tained in some predicate form a complete lattice). Let c : X //H(X,X) be a coalgebra
for a higher-order polynomial functor and let P ⊆ X be a predicate on X. The greatest
strong invariant6 contained in P is denoted with P . Obviously, if the greatest invariant
exists then it is unique. Consider now the following function ΦP : PredX

//PredX

between predicates over X (for a fixed coalgebra c):

ΦP (Q ⊆ X)
def
= P ∧ c∗ (Pred(H)(>X , Q))

LetQ be a fixed point of ΦP , that is ΦP (Q) = Q. Then we haveQ ⊆ c∗ (Pred(H)(>X , Q))
which is the defining condition for strong invariants in different notation. So any fixed
point of ΦP is a strong invariant.

Proposition 3.4.25 Let H be a higher-order polynomial functor and c : X //H(X,X)
be a H–coalgebra. For every predicate P ⊆ X the greatest strong invariant contained in
P exists, it is given as the greatest fixed point of ΦP .

Proof For the application of the Knaster/Tarski fixed point theorem (Tarski, 1955) I
have to show that ΦP is monotone, that is that Q1 ⊆ Q2 implies ΦP (Q1) ⊆ ΦP (Q2).
From Lemma 3.3.2 (1) I get Pred(H)(>X , Q1) ⊆ Pred(H)(>X , Q2), and monotonicity
of ΦP follows from the monotonicity of ∧. Every strong invariant is a prefixed point of
ΦP , so the result follows from Knaster/Tarski. �

Note that I just proved that ΦP is an endofunctor on PredX . The existence of greatest
strong invariants ensures the semantics for the infinitary model operator always and
eventually in ccsl, see Subsection 4.5.2 on page 173.

Lemma 3.4.26 Consider a higher-order polynomial functor H and an arbitrary family
of predicates (Pi ⊆ X)i∈I , then∧

i Pred(H)(>Y , Pi) ⊆ Pred(H)(>Y ,
∧

i Pi)∨
i Pred(H)(>Y , Pi) ⊆ Pred(H)(>Y ,

∨
i Pi)

Proof First prove
Pred(H)(Q,>) = > (∗)

by induction on H. The two main results follows now also by induction on H. The cases
of product and coproduct follow directly from the Lemmas 2.4.10 (1), 2.4.9 (1), and
2.4.5 (1). For the case H = H1 ⇒ H2 note that (∗) implies Pred(H1 ⇒ H2)(>Y , Pi) =
Pred(H1)(Pi,>Y )⇒P Pred(H2)(>Y , Pi) = >H1(X,Y )⇒P Pred(>Y , H2)(Pi). �

6Compare Subsection 2.6.6 on greatest invariants of coalgebras for polynomial functors.
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3. Coalgebras for Binary Methods

Proposition 3.4.27 For coalgebras of higher-order polynomial functors strong invari-
ants are closed under arbitrary intersection and union.

Proof Apply the preceding lemma. �

Just for completeness, let me state the following characterisation for greatest strong
invariants (which follows now immediately):

Q =
∨{

P | P ⊆ Q and P is a strong invariant
}

The advantage of strong invariants is that the greatest invariant contained in some
predicate does always exist. This allows me to give semantics to the infinitary modal
operators always and eventually in Subsection 4.5.2. The disadvantage is that strong
invariants do not fit well together with bisimulations.

3.4.7. Partially Reflexive Bisimulations

Let c : X //G(X,X) be a coalgebra for an extended polynomial functor G and consider
bisimulations for c (i.e., relations R ⊆ X ×X that are bisimulations for c and c). One
expects that a notion that captures behavioural indistinguishability is an equivalence:
if x ∈ X and y ∈ X show the same behaviour and y and z ∈ X show the same
behaviour, then also x and z show the same behaviour. However, the usual approach
to define the notion of bisimulation for coalgebras does not require bisimulations to be
transitive, symmetric, or reflexive. Instead one shows that for every bisimulation R (for
a polynomial functor) the least equivalence relation R containing R is a bisimulation
again.

This approach fails for extended polynomial functors, see Example 3.3.9. In this
subsection and in the next section on extended cartesian functors I consider bisimulations
with additional properties (for instance bisimulations that are reflexive) that behave
more nicely with respect to union. First I have to fix some notation.

Definition 3.4.28 Let R ⊆ X ×X be a relation.

• The domain of R is the predicate dom(R), defined as

dom(R) =
∐

π1
R ∨

∐
π2
R = {x ∈ X | ∃y ∈ X . xR y ∨ y Rx}

• The relation R is partially reflexive if it is reflexive on its domain, that is, if for all
x, y ∈ X

xRy implies xRx and y R y

The following result is immediate.

Lemma 3.4.29 Let R,S ⊆ X ×X be partially reflexive relations on the same domain,
then R ∨ S ⊆ R ◦ S �
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This gives immediately the following proposition.

Proposition 3.4.30 Let c : X //G(X,X) be a coalgebra for an extended polynomial
functor G and let R,S ⊆ X×X be bisimulations for c. If R and S are partially reflexive
on the same domain, then there exists a bisimulation containing R ∨ S. In particular,
there is a bisimulation containing R ∨ S if both R and S are reflexive.

Proof Combining Proposition 3.4.6 with the preceding lemma yields R ◦ S as the
required bisimulation. �

One should expect that any decent notion of behavioural indistinguishability is re-
flexive, so restricting the attention to reflexive (or even only to partially reflexive) bisim-
ulations seems very reasonable. Note, that the preceding theorem does not yield the
existence of a greatest bisimulation for c. For the greatest bisimulation one needs an
upper bound for arbitrary collections of bisimulations, whereas Proposition 3.4.30 only
yields an upper bound for finite collections. There are indeed examples with infinitely
ascending chains of bisimulations, see Example 3.5.10.

Let me now turn to bisimulations between two coalgebras c : X //G(X,X) and
d : Y //G(Y, Y ). Consider two relations R,S ⊆ X×Y . A relation B ⊆ X×Y is called
a base for R and S if all the following points hold:

(1) B ⊆ R (3)
∐

π2
R =

∐
π2
B

(2) B ⊆ S (4)
∐

π1
S =

∐
π1
B

The existence of a base is a particular generalisation of the notion of partial reflexiveness:
If R and S are partially reflexive on the same domain then the equality relation restricted
to the common domain is a base for R and S.

Proposition 3.4.31 Let c : X //G(X,X) and d : Y //G(Y, Y ) be two coalgebras for
an extended polynomial functor G and let R and S ⊆ X × Y be two bisimulations for c
and d with a base B. If B is a bisimulation then there exists a bisimulation containing
R ∨ S.

Proof Being a base for R and S is just the technical condition that allows one to derive
R ∨ S ⊆ R ◦ Bop ◦ S. Now one can apply Proposition 3.4.6. �

This last proposition is on the edge of my knowledge at the time of writing. It
remains an open question for future work if Proposition 3.4.31 is useful in applications.
It is mainly included here to demonstrate that the essential property that allows the
proof of Proposition 3.4.30 can be generalised in a straightforward way.
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3. Coalgebras for Binary Methods

3.5. Extended Cartesian Functors

Extended cartesian functors are the least generalisation of polynomial functors that
I consider in the present thesis. They deserve their own section because they allow
me to adopt the result from (Poll and Zwanenburg, 2001) that (partial) bisimulation
equivalences form a complete lattice. Let me first give some definitions to make the
discussion easier.

Definition 3.5.1 (Extended Cartesian Functors) Assume a bicartesian closed cat-
egory C.

• A cartesian functor is a polynomial functor without exponent. More precisely, a
functor K : C //C is a cartesian functor if it is defined as one of the cases

K(X) =


X
A
K1(X)×K2(X)
K1(X) +K2(X)

where A is an arbitrary object of C and K1 and K2 are previously defined cartesian
functors.

• An extended cartesian functor is an extended polynomial functor that has on-
ly cartesian functors on the left hand side of ⇒. More precisely: A functor
G : Cop ×C //C is called an extended cartesian functor, if it is defined as one of
the cases

G(Y,X) =


X
A
G1(Y,X)×G2(Y,X)
G1(Y,X) +G2(Y,X)
K(Y ) ⇒ G1(Y,X)

where A is an arbitrary object of C, K is a cartesian functor, and G1 and G2 are
previously defined extended cartesian functors.

In (Hermida and Jacobs, 1998; Poll and Zwanenburg, 2001) the term polynomial functor
is used for what I call cartesian functor here. The difference between extended cartesian
functors and extended polynomial functors is that extended cartesian functors can model
only those binary methods that take no arguments with functional type (see Table 1.1
on page 6). An example for an extended cartesian functor is

(Y,X) � // (Y ⇒ A) + (X × A) (∗)

which corresponds to a binary method of type Self //(Self ⇒ A) + (Self × A). The
functor NeighbourhoodPointIface from Example 3.2.4 (on page 80) is not an extended

108



3.5. Extended Cartesian Functors

cartesian functor, because the method move with neighbour takes an argument of the
type Addr ⇒ Self.

Note that (extended) cartesian functors are a proper subclass of (extended) polyno-
mial functors. Cartesian functors and extended cartesian functors inherit the definitions
for coalgebra, coalgebra morphism, predicate and relation lifting, bisimulation and in-
variant from polynomial and extended polynomial functors, respectively.

Recall that a relation R is a partial equivalence relation if it is symmetric and tran-
sitive, that is, if Rop ⊆ R and R ◦ R ⊆ R. Recall further that R is an equivalence
relation if it is reflexive (i.e., Eq(X) ⊆ R), symmetric, and transitive. It is immediate
that a partial equivalence relation R is an equivalence relation on its domain dom(R).
Following (Rutten, 2000) I call a bisimulation that is a (partial) equivalence relation a
(partial) bisimulation equivalence.

Poll and Zwanenburg consider in (Poll and Zwanenburg, 2001) dialgebras and prove
that bisimulation equivalences for dialgebras form a complete lattice. A dialgebra with
carrier X is a finite set of functions of the form

FIN(X) // FOUT(X)

where both FIN and FOUT are cartesian functors. One can use distributivity to move
× over + to convert every dialgebra into a pair 〈c, a〉, where c is a coalgebra for some
extended cartesian functor and a is a constant in F (X) for some polynomial functor F .
Note that there are coalgebras for extended cartesian functors that cannot be represent-
ed as a dialgebra. An example is (∗) from above. The result of Poll and Zwanenburg
implies that there is a subclass of extended cartesian functors for which the bisimulation
equivalences form a complete lattice.

In the following I generalise the result of (Poll and Zwanenburg, 2001) and prove that
partial bisimulation equivalences form a complete lattice for all coalgebras of extended
cartesian functors. At the end of this subsection there is an example of a coalgebra (for
an extended polynomial functor) for which there is no greatest bisimulation equivalence
(demonstrating that a further generalisation is impossible). The work of Poll and Zwa-
nenburg and personal discussions with Erik Poll had a big influence on what I present
here.

All the following lemmas and propositions are towards Theorem 3.5.9 (on page 113
below). All proofs have been formalised in pvs as far as this is feasible, see Section 2.4.4
and Appendix A. I start with basic properties that deal with technical side conditions.

Let me first collect some basic facts about partial equivalence relations. For a relation
R ⊆ X × X the least partial equivalence relation containing R is denoted by R. The
partial equivalence relations on a set X form a complete lattice. Taking the least partial
equivalence relation is a closure operation, that is R ⊆ R, R ⊆ S implies R ⊆ S, and

R = R. In particular R ⊆ S implies R ⊆ S if S is a partial equivalence relations.
One obtains R from R by taking the symmetric and transitive closure of R. The

symmetric and transitive closure can also be described as follows: Call a finite sequence
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x1, x2, . . . , xn (with n > 2) a zigzag in R if for all k < n either xk Rxk+1 or xk+1Rxk.
Two elements x, x′ ∈ X are related by R if and only if there is a zigzag x, . . . , x′ in R.
I use zigzags quite often in the following. Instead of proving xRx′ I usually construct a
zigzag x, . . . , x′ in R.

If R1 and R2 are two partially reflexive relations with equal domains (in particular
if R1 and R2 are partial equivalence relations on the same domain) then aR1 b implies
both aR2 a and bR2 b. For an arbitrary collection (Ri)i∈I of partially reflexive relations
also their union

∨
iRi is partially reflexive.

Lemma 3.5.2 Let S ⊆ Y × Y and R ⊆ X ×X be partial equivalence relations.

1. The cartesian closed structure of Rel preserves partial equivalence relations, that
is all of S×RR, S+RR, and S⇒RR are partial equivalence relations.

2. The relation lifting Rel(H)(S,R) is a partial equivalence relation for all higher-
order polynomial functors H.

Proof Point (1) has been proved in pvs. The only thing that is not immediate is
transitivity of S⇒RR: Assume f (S⇒RR) g and g (S⇒RR)h, we have to show that
f (S⇒RR)h, that is, that aS b implies (f a)R (h b). From the assumptions we get
(f a)R (g b) and because b S b also (g b)R (h b) and the result follows from the tran-
sitivity of R.

Item (2) is proved by induction on the structure of H, using Item (1). �

Lemma 3.5.3 For polynomial functors the relation lifting preserves the property of ‘hav-
ing the same domain’. Precisely, let R1, R2 ⊆ X × X be relations with dom(R1) =
dom(R2). If R1 and R2 are partially reflexive then

dom(Rel(F )(R1)) = dom(Rel(F )(R2))

for all polynomial functors F .

Proof Let R1, R2 ⊆ X×X and S1, S2 ⊆ Y ×Y be partially reflexive relations such that
dom(R1) = dom(R2) and dom(S1) = dom(S2). First one proofs the following equations.

dom(S1×RR1) = dom(S2×RR2)

dom(S1 +RR1) = dom(S2 +RR2)

dom(Eq(A)⇒RR1) = dom(Eq(A)⇒RR2)

Then the lemma follows by induction on the structure of F . The above equations have
been proved in pvs. �

The preceding lemma does not hold for extended polynomial functors.
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Lemma 3.5.4 Let S ⊆ Y × Y and R ⊆ X ×X be relations.

S+RR = S +R R (1)

And under the condition that both S and R are partially reflexive

S×RR = S ×R R (2)

Proof This lemma has been proved in pvs. Let me first do S+RR ⊆ S+RR. Because
(−) is a closure operator and S+RR is a partial equivalence relation by Lemma 3.5.2 (1),
it is sufficient to show S+RR ⊆ S+RR, but this follows from monotonicity of (−) and
+R (Lemma 2.4.5 (2)).

For S+RR ⊆ S+RR assume (κ1y, κ1y
′) ∈ S+RR, so there is a zigzag y, y2, . . . , yn, y

′

in S. Then κ1y, κ1y2, . . . , κ1yn, κ1y
′ is a zigzag in S+RR, so (κ1y, κ1y

′) ∈ S+RR. Sim-
ilarly for the second injection.

S×RR ⊆ S×RR follows again from monotonicity and Lemma 3.5.2 (1).
For S×RR ⊆ S×RR assume ((y, x), (y′, x′)) ∈ S×RR, so there is a zigzag

y, y2, . . . , yn, y
′ in S and a zigzag x, x2, . . . , xn, x

′ in R. Both R and S are partially reflex-
ive, therefore (y, x), (y2, x), . . . , (yn, x) , (y′, x), (y′, x2) , . . . , (y

′, xn), (y′, x′) is a zigzag
in S×RR. So ((y, x), (y′, x′)) ∈ S×RR. �

For the exponent one can infer

S⇒RR ⊆ S⇒RR

under the condition that S is partially reflexive and that R is symmetric. And

S⇒RR ⊆ S⇒RR

holds if R is a partial equivalence relation. However, these two properties do not help in
the following.

Lemma 3.5.5 Let Si ⊆ Y × Y and Ri ⊆ X × X be two indexed families of relations
for an arbitrary index set I. Assume that all the Ri and all the Si have pairwise equal
domains. Then ∨

i (Si +RRi) = (
∨

i Si) +R(
∨

iRi) (1)

And under the condition that all the Si and all the Ri are partially reflexive it holds that∨
i (Si×RRi) = (

∨
i Si)×R(

∨
iRi) (2)
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Proof Equation (1) is mainly included for completeness here, it follows immediately
from Lemma 2.4.10 (2). The same applies to the inclusion from left to right in Equa-
tion (2). It remains to prove that (

∨
i Si)×R(

∨
iRi) ⊆

∨
i (Si×RRi). For that it is suf-

ficient to show that (
∨

i Si)×R(
∨

iRi) ⊆
∨

i (Si×RRi), so assume y Si y
′ and xRj x

′ for
some i, j ∈ I. Now the assumptions imply that xRi x and y′ Sj y

′, so (y, x), (y′, x), (y′, x′)

is a zigzag in
∨

i (Si×RRi), thus ((y, x), (y′, x′)) ∈
∨

i (Si×RRi). �

Proposition 3.5.6 Let K be a cartesian functor and (Ri)i∈I be a family of partial
equivalence relations that have pairwise equal domains. Then it holds that

Rel(K)(
∨

iRi) =
∨

i Rel(K)(Ri)

Proof The proof goes by induction on the structure of K. The cases of constants and
identity are immediate. With the previous utility lemmas the proof for product and
coproduct is almost identical. So let me do the case K = K1 × K2 here. Note that
Lemma 3.5.3 implies that dom(Rel(K1/2)(Ri) = dom(Rel(K1/2)(Rj) for all i, j ∈ I.
Further, Lemma 3.5.2 shows that Rel(K1/2)(Ri) is a partial equivalence relation for all
i, so

∨
i Rel(K1/2)(Ri) is partially reflexive.

Rel(K1 ×K2)(
∨

iRi) = Rel(K1)(
∨

iRi) ×R Rel(K2)(
∨

iRi)

=
∨

i Rel(K1)(Ri) ×R

∨
i Rel(K2)(Ri) by Ind. Hyp.

=
∨

i Rel(K1)(Ri) ×R

∨
i Rel(K2)(Ri) by 3.5.4 (2)

=
∨

i

(
Rel(K1)(Ri) ×R Rel(K2)(Ri)

)
by 3.5.5 (2)

=
∨

i Rel(K1 ×K2)(Ri) �

Remark 3.5.7

1. The important part of the preceding proposition is the subset relation from left
to right: Assume we are given a pair (t, t′) ∈ Rel(K)(

∨
iRi) then we can safely

assume that there is a zigzag t, t2, . . . , tn, t
′ in

∨
i Rel(K)(Ri).

2. The proposition does not hold for polynomial functors because for the exponent
one can only derive

Eq(A)⇒R

∨
iRi ⊇

∨
i (Eq(A)⇒RRi) (3.1)

By induction this gives for a polynomial functor F

Rel(F )(
∨

iRi) ⊇
∨

i Rel(F )(Ri)

(which follows also directly from 2.6.9 (1) and (5), 3.5.2, and from the monotonicity
of (−)). It is quite easy to find examples in which the subset relation in (3.1) is
strict (see Example 3.5.10 below).
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Lemma 3.5.8 Let G be an extended cartesian functor and let (Si) ⊆ Y × Y and
(Ri) ⊆ X × X be two families of partial equivalence relations indexed by an arbi-
trary set I. Assume that all the Si and all the Ri have pairwise equal domains. Let
(s, r) ∈ Rel(G)(Sj, Rj) for some j ∈ I. If we have additionally that for all i ∈ I
both (r, r) ∈ Rel(G)(Si, Ri) and (s, s) ∈ Rel(G)(Si, Ri) then we have also (s, r) ∈
Rel(G)(

∨
i Si,

∨
iRi).

Proof The proof proceeds by induction on the structure of G. All the induction steps
have been formalised in pvs. The cases of G(Y,X) = A and G(Y,X) = X are (as always)
immediate. The cases of product and coproduct are proved by unpacking the definition
of relation lifting and invoking the induction hypothesis.

Let me demonstrate G(Y,X) = K(Y ) ⇒ G1(Y,X) in detail. From the assumptions
it follows that s and r are functions such that there exists j ∈ I with

∀a, b ∈ K(Y ) . Rel(K)(Sj)(a, b) implies Rel(G1)(Sj, Rj)(s a, r b) (1)

and that for all i ∈ I

∀a, b ∈ K(Y ) . Rel(K)(Si)(a, b) implies Rel(G1)(Si, Ri)(s a, s b) (2)

∀a, b ∈ K(Y ) . Rel(K)(Si)(a, b) implies Rel(G1)(Si, Ri)(r a, r b) (3)

It remains to show that

∀a, b ∈ K(Y ) . Rel(K)(
∨

i Si)(a, b) implies Rel(G1)(
∨

i Si,
∨

iRi)(s a, r b)

So assume (a, b) ∈ Rel(K)(
∨

i Si), by Proposition 3.5.6 there is a zigzag a1, . . . , an with
a1 = a and an = b in

∨
i Rel(K)(Si). Build now the sequence s a1, s a2, . . . s an, r an

and invoke the induction hypothesis for G1 on each two adjacent elements to show that
it is a zigzag in Rel(G1)(

∨
i Si,

∨
iRi). This completes the proof because the latter is a

partial equivalence relation by Lemma 3.5.2.
Checking the assumptions of the induction hypothesis we get by Lemma 3.5.2 that

Rel(K)(Si) is partially reflexive thus by assumption (2) (s ak, s ak) ∈ Rel(G1)(Si, Ri) for
all k ≤ n and all i ∈ I. Because a1, . . . , an is a zigzag we know that for each k < n
there is some j ∈ I such that either (ak, ak+1) or (ak+1, ak) is contained in Rel(K)(Sj),
so by assumption (2) we have that either (s ak, s ak+1) or (s ak+1, s ak) is contained in
Rel(G1)(Sj, Rj). Similarly (1) dispatches the assumptions for invoking the induction
hypothesis on the pair (s an, r an). �

Theorem 3.5.9 Let c : X //G(X,X) be a coalgebra for an extended cartesian functor
G. The partial bisimulation equivalences for c on a fixed domain form a complete lattice.
In this lattice the join of a family (Ri) of bisimulations is given by

∨
iRi. In particular∨

iRi is a bisimulation for any family (Ri) of bisimulation equivalences.
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Proof It is sufficient to show that for an arbitrary indexed family (Ri) of partial bisim-
ulation equivalences with pairwise equal domains the relation

∨
iRi is a bisimulation.

If Ri is a bisimulation for c then (c, c) ∈ Rel(X ⇒ G)(Ri, Ri). Invoking Lemma 3.5.8
on the collection (Ri) and the pair (c, c) yields then the required (c, c) ∈ Rel(X ⇒
G)(
∨

iRi,
∨

iRi). �

Example 3.5.10 This is the announced example of a coalgebra for which there is an
infinite ascending chain of bisimulation equivalences such that every upper bound of
this chain is not a bisimulation. This example shows that the preceding theorem cannot
be generalised to all extended polynomial functors. Consider the extended polynomial
functor

K(Y,X)
def
= (N⇒ Y ) ⇒ bool

For a function g : V //Y (the covariant argument is ignored) the action on morphisms
is

K(g,X) : (N⇒ Y ) ⇒ bool // (N⇒ V ) ⇒ bool

= λh . λk . h(g ◦ k)

To give a readable presentation of the relation lifting for K I need the notion of R–
related functions for a relation R ⊆ U × V . Two functions a : N //U and b : N //V
are R–related if R(a n, b n) holds for all n ∈ N. The relation lifting for K is

Rel(K)(R,−) ⊆ K(U,−)×K(V,−)

=
{
(f, g) | f : (N⇒ U) //bool , g : (N⇒ V ) //bool such that

for all R–related functions a and b : f a = g b
}

(I omitted the covariant argument because it is ignored anyway.)
In the following I define a K–coalgebra c on state space N. So c takes as second

argument a function N //N . I call such a function bounded if there exists a natural
number n such that f i < n for all i ∈ N. The main point is, that for the total relation
>N×N there exist pairs of functions a, b : N //N such that a and b are >N×N–related
and a is bounded while b is not bounded. The coalgebra c is now defined as

c : N // (N⇒ N) ⇒ bool

= λi . λa .

{
> a is bounded
⊥ otherwise

where > and ⊥ are the two elements of bool. The construction of c ensures that the total
relation >N×N is not a bisimulation for c. Consider now the family (Sn)n∈N of relations
defined by

i Sn j if and only if i = j or (i < n ∧ j < n)
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For any of the Sn and two functions a and b the following holds: If a and b are Sn

related then a is bounded precisely when b is. Therefore all the Sn are bisimulation
equivalences. Further, in accordance with Proposition 3.4.30, any finite set of relations
Sn has an upper bound, which is a bisimulation for c. The least upper bound of all Sn

is the total relation, so there is no greatest bisimulation equivalence.

In (Tews, 2002b) I further investigate the problem of the existence of greatest bisimu-
lation equivalences for extended polynomial functors. There I show that for finitely based
coalgebras a greatest bisimulation equivalence does always exist. A restriction to finitely
based coalgebras is not unreasonable: It essentially excludes those coalgebras that are
not computable. �

3.6. Final Coalgebras for Generalised Polynomial Functors

In this Section I discuss the existence of final coalgebras for generalised polynomial
functors. Recall that an object z in a category C is a final object, if for any object
x in C there exists exactly one morphism x //z . This unique morphism is usually
denoted with !x. Final coalgebras (in a suitable category of coalgebras) are minimal (any
bisimulation for the final coalgebra is contained in the equality relation) and they realize
all possible behaviours (because any other coalgebra can be embedded into the final one
via the unique morphism !). Final coalgebras can give semantics to behavioural types or
class specifications (Reichel, 1995).

For all bounded functors7 (including all polynomial functors) a final coalgebra does
exist (Kawahara and Mori, 2000). So it is natural to ask if those extended cartesian
(or extended polynomial) functors, which are not equivalent to polynomial functors,
have final coalgebras. I already said above, that the functor T from Example 3.3.8 has
a final coalgebra. This is the case because one cannot make any observations from a
T–coalgebra.

More general, let H be a higher-order polynomial functor such that H(1,1) is iso-
morphic to 1. Then H has a final coalgebra, it is the only function 1 //H(1,1).

Consider now an extended cartesian functor G that does allow for an observation
(i.e., G(1,1) 6∼= 1). If G is not naturally isomorphic to a polynomial functor, that is,
if G models a signature that contains at least one binary method, then one can use a
diagonalisation argument to show that G cannot have a final coalgebra. In the following
I prove this claim only for one particular extended cartesian functor. However, the proof
generalises to all such extended cartesian and extended polynomial functors.

7An endofunctor T is bounded if there is a cardinality ρ such that for every T–coalgebra X //T (X)
and for every x ∈ X the least invariant containing x is bounded by ρ, see (Kawahara and Mori,
2000).
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Proposition 3.6.1 The functor G(Y,X) = (Y ⇒ bool) does not admit a final coalgebra.

(The functor G(Y,X) = (Y ⇒ bool) corresponds to a signature with one binary method
m : Self × Self //bool .)

Proof This proposition has been proved in pvs. Let me denote the two elements of
bool with t and f and let not : bool //bool be the function, which maps t to f and vice
versa.

Assume towards a contradiction that z : Z //Z ⇒ bool is a final coalgebra. Con-
struct a new coalgebra z′ : (Z + 1) //(Z + 1) ⇒ bool by

z′(x)(y) =


z(x′)(y′) if x = κ1 x

′ and y = κ1 y
′

not(z(x′)(x′)) if x = κ1 x
′ and y = κ2 ∗

t otherwise.

By construction κ1 : Z //Z + 1 is a coalgebra morphism z //z′ . Because z is the final
coalgebra, there exists !z′ : Z + 1 //Z . Because !z′ is a coalgebra morphism z′ //z the
equation z′ x y = z (!z′ x) (!z′ y) holds for all x, y ∈ Z + 1. Further, we have !z′ ◦ κ1 = idZ

because there can only be one coalgebra morphism z //z . Let ∗ be the only element of
1 and let � = !z′(κ2 ∗). Then

not(z(�)(�)) = z′(κ1�)(κ2 ∗) Definition of z′

= z(!z′(κ1 �))(�) Apply !z′ : z′ //z

= z(�)(�) Use !z′ ◦ κ1 = idZ

which is clearly impossible. Thus, there is no final coalgebra for G. �

The preceding result has serious consequences. For coalgebras of polynomial end-
ofunctors there exists a coinduction principle, see Subsection 2.6.7. It states that the
bisimilarity relation for the final coalgebra is contained in the equality relation. For
extended polynomial and extended cartesian functors this principle is vacuous. First,
the final coalgebra does not exist for interesting functors of these classes. Second, for
extended polynomial functors, it is unclear what bisimilarity should be (because there
is no greatest bisimulation).

A notion of coalgebra without a corresponding notion of coinduction loses much of its
original attraction. However, I would like to argue here, that an important application
area of coalgebras is object-oriented specification. Without an appropriate treatment
of binary methods, coalgebraic specification will remain an exotic area in theoretical
computer science. With all the problems that were caused by binary methods in the
past, it is unrealistic to hope that one can get binary methods for free.

Apart from the coinduction principle, the existence of a final model can serve two
purposes. First, it tells the person who developed the specification that the specification
is itself consistent. Second, he can examine the states of the final model and if he does
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not find any unwanted behaviour, he can be sure that the specification captures the right
class of models. Therefore I would like to propose that for any coalgebraic specification
the developer should convince himself that the final model exists. Once he did this, he
can also use an appropriate coinduction principle (even for signatures that correspond
to higher-order polynomial functors).

The question of sufficient conditions for the existence of a final coalgebra (in a given
class of coalgebras) remains open for future research. For polynomial functors Kurz
recently solved this problem in (Kurz, 2002). In this work Kurz characterises those
coalgebraic logics that admit final semantics. A logic admits final semantics if every
definable class of coalgebras contains a final coalgebra.

For the present thesis I use the construction of the final model as described in (Ja-
cobs, 1996b). For class specifications in ccsl I give in Proposition 4.5.18 a sufficient
condition that ensures that the final model constructed this way is nonempty (see also
Theorem 4.7.4 on page 206).

3.7. Summary

This chapter generalises the familiar notion of coalgebra to a form such that coalgebras
can model arbitrary class signatures built up from the polynomial type constructions
+,×,⇒ and from constants. This includes in particular arbitrary binary methods. The
framework presented here is more general than what would be needed to reason about
Java or Eiffel. In both languages it is not possible to form function types, so in both
languages one can declare the method equal from the examples of points (page 74) but
not the method move with neighbours (page 75). For the verification of Java and Eiffel
one can restrict oneself to the class of extended cartesian functors.

The generalisation of coalgebras works by defining three new classes of functors:
Higher-order polynomial functors that can model arbitrary signatures, extended polyno-
mial functors that can model signatures with a restricted use of the exponential ⇒, and
extended cartesian functors for even more restricted signatures (see Table 1.1 on page 6
for a comparison). For these three classes of functors I gave definitions for the notions of
coalgebra, coalgebra morphism, bisimulation, and invariant. All these definitions gener-
alise the corresponding notions for polynomial functors: every polynomial functor is an
extended cartesian functor, every extended cartesian functor is an extended polynomial
functor, and every extended polynomial functor is a higher-order polynomial functor.
Further, if α : X //F (X) is a coalgebra for a polynomial functor F then it is also a
coalgebra for F seen as one of the more general functors. The notions of bisimulation
and invariant for α are the same, regardless whether one considers F as a higher-order,
extended polynomial, extended cartesian, or traditional polynomial functor.

The results about coalgebras for polynomial functors that have been collected from
the literature in Section 2.6 serve as a benchmark for the proposed generalisation of
the notion of coalgebra. Higher-order polynomial functors turn out to be too expressive
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to have many useful properties: Almost all familiar results that are known to hold for
coalgebras of polynomial functors do not hold for coalgebras of higher-order polynomial
functors. For most of these negative results this chapter presents counter examples,
thus proving that these properties do not hold in general. For reasons of space some
counter examples have been omitted, for instance an example of a coalgebra morphism
whose kernel is not a bisimulation. These omitted counter examples are part of the pvs
formalisation of this thesis and are available on the world wide web, see Appendix A.

Extended polynomial functors, which are a proper subclass of higher-order polynomi-
al functors, behave much nicer. With three exceptions Section 3.4 proves all the results
from the introduction on coalgebras (Section 2.6) for extended polynomial functors. The
three exceptions are the following: the existence of a final coalgebra and union of in-
variants and bisimulations. As a consequence, the greatest bisimulation and the greatest
invariant contained in some predicate do not exist for extended polynomial functors.

Concerning the three exceptions there is the following to note: Proposition 3.6.1 shows
that there is no way to recover the existence of final coalgebras for extended cartesian
functors. However, in applications one often restricts the behaviour of the coalgebra. It
is often the case that in such a restricted class of coalgebras a final coalgebra does exist.

Concerning the union of invariants, the Example 3.3.4 shows that the notion of
invariant according to Definition 3.3.3 might not capture everybody’s intuition about
invariance. The alternative, the strong invariants presented in Subsection 3.4.6 are closed
under arbitrary union. So for defining a logic for coalgebras the strong invariants are
more appropriate because strong invariants can give semantics to the modal operators
always and eventually, see Subsection 4.5.2. However, there are problems in the interplay
between strong invariants and bisimulations. Only some of the propositions relating
bisimulations and invariants do hold for strong invariants.

For the union of bisimulations the solution is to strengthen the definition of bisimula-
tion. If bisimulations are required to be partially reflexive then there is an upper bound
for any two bisimulations. If one requires that bisimulations are partial equivalence re-
lations then, for the class of extended cartesian functors, bisimulations form a complete
lattice. For the class of extended polynomial functors a similar result can be obtained by
placing restrictions on the coalgebra, see (Tews, 2002b). One direction for future work
is the generalisation of Theorem 3.5.9 to bisimulations between two different coalgebras.
This could be done along the lines of Proposition 3.4.31.

So in summary it is fair to say that coalgebras for extended polynomial functors solve
the longstanding problem of incorporating binary methods into coalgebraic specification.

The approach to use extended polynomial functors is more general than other ap-
proaches that allow one to model binary methods. In comparison with the use of defini-
tional extensions and algebraic extensions (see page 78f.) extended polynomial functors
allow the binary method to contribute to the observable behaviour. Further the result
type of binary methods is not restricted to Self.

In comparison with hidden algebra (Roşu, 2000; Goguen and Malcolm, 2000) extend-
ed polynomial functors offer more flexibility with respect to the types of the methods
(recall that in hidden algebra operations are restricted to the type S1 × · · · × Sn

//S0 ,
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where all the Si are sorts). Additionally, the coalgebraic approach offers the notion of
bisimulation to compare states of different models. In case binary methods are present
one can only compare states of one model with hidden congruences. In this case the
precise relation of hidden congruences and bisimulations (on one coalgebra) is unclear.
If a (single sorted) hidden signature contains no binary method then it corresponds to a
polynomial functor. Under this restriction the greatest hidden congruence corresponds
to bisimilarity.

An important problem that has not been investigated in the present thesis is the
interplay of extended polynomial functors (or higher-order polynomial functors) with
the (iterated) data functors from (Hensel, 1999). The class of data functors is an ex-
tension of polynomial functors with least and greatest fixed points. For instance from
the functor TList(A,X) = A × X + 1 one obtains as least fixed point the functor
List(A) = µX . TList(A,X) that sends a set A to the set of lists over A. The greatest fixed
point is Seq(A) = νX . TList(A,X), the functor that gives (possibly infinite) sequences.
The construction can be continued, one obtains possibly infinitely branching trees of
finite depth as A � //µX . Seq(A×X). (Hensel, 1999) also describes the predicate and
relation lifting for data functors. In the case of lists this is

Pred(List)(P ) ⊆ List(X)

Rel(List)(R) ⊆ List(X)× List(Y )

for a predicate P ⊆ X and a relation R ⊆ X × Y , characterised by

Pred(List)(P )(l) if and only if

{
l = nil or
l = cons(x, l′) ∧ P (x) ∧ Pred(List)(P )(l′)

Rel(List)(R)(l1, l2) if and only if


l1 = nil ∧ l2 = nil or
l1 = cons(x, l′1) ∧ l2 = cons(y, l′2) ∧

R(x, y) ∧ Rel(List)(R)(l′1, l
′
2)

The question is, if one can allow arbitrary data functors as ingredient functors of
extended polynomial functors. (It does not make sense to take fixed points of proper
extended polynomial functors, because neither initial algebras nor final coalgebras exist
for proper extended polynomial functors.) If data functors are allowed, one can have a
method declaration

m : Self × List[Self] //Self × A

that corresponds to a functor T : Setop × Set //Set given by

T (Y,X) = List(Y ) ⇒ Self × A (∗)

The method m behaves similarly to a binary method and the functor T shares properties
with extended cartesian functors. For instance there is no final coalgebra for T and
T–bisimulations and T–invariants are closed under intersection but not under union.
Closure under union can be obtained by considering partial bisimulation equivalences
only. All this hinges on the following properties of predicate and relation lifting for lists.

119



3. Coalgebras for Binary Methods

Lemma 3.7.1

1. Predicate and relation lifting for lists is monotone.

2. Predicate and relation lifting for lists is both fibred and cofibred.

3. The following commutation properties hold

Pred(List)(>X) = >List(X)

Rel(List)(Eq(X)) = Eq(List(X))

(Rel(List)(R))op = Rel(List)(Rop)

Rel(List)(R) ◦ Rel(List)(S) = Rel(List)(R ◦ S)∧
i Pred(List)(Pi) = Pred(List)(

∧
i Pi)∨

i Pred(List)(Pi) ⊆ Pred(List)(
∨

i Pi)∧
i Rel(List)(Ri) = Rel(List)(

∧
iRi) (for I 6= ∅)∨

i Rel(List)(Ri) ⊆ Rel(List)(
∨

iRi)∐
π1

Rel(List)(R) = Pred(List)(
∐

π1
R)

Rel(List)(R) ∧ π∗1 Pred(List)(P ) = Rel(List)(R) ∧ Rel(List)(π∗1 P )

for arbitrary predicates and relations.

4. If R is partially reflexive then

Rel(List)(R) = Rel(List)(R)

And under the assumption that (Ri) is a family of partial reflexive relations on the
same domain: ∨

i Rel(List)(Ri) = Rel(List)(
∨

iRi)

Proof The proofs are trivial or by induction on the structure of lists. Everything has
been proved in pvs. �

This shows that one can allow the list construction in extended polynomial functors
and also in cartesian functors: All the results from the preceding section remain valid
under this generalisation. So one can conjecture that extended polynomial functors keep
their properties if one allows arbitrary data functors as ingredients. For the result about
bisimulation equivalences Example 3.5.10 shows that one cannot allow the sequence
functor Seq as ingredient of cartesian functors. I conjecture that extended cartesian
functors keep their properties if one allows least fixed points and iterated least fixed
points as ingredients of cartesian functors.

Another direction of generalisation that remains for future work is the inclusion of
the (covariant) powerset functor to model nondeterminism.
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This chapter describes the Coalgebraic Class Specification Language ccsl. The most
distinguishing feature of ccsl is the provided notion of coalgebraic specification. Further,
ccsl does not force its users into a religious decision to adopt either the algebraic or the
coalgebraic point of view. Instead ccsl encourages the combination of abstract data type
specifications with coalgebraic specifications in an iterative way. Real world examples
often involve both: abstract data types and behavioural aspects (or process types). Such
examples can be mapped to ccsl in a very natural way. ccsl was first presented to
public in (Hensel et al., 1998), a recent reference is (Rothe et al., 2001), and some more
technical aspects are described in (Tews, 2002a).

The specification language ccsl (together with some supporting tools) was developed
in close cooperation with the people who are associated within the loop project on
formal methods for object-oriented programming. loop stands for Logic for Object-
Oriented Programming ; see the introduction in Chapter 1 for more information about
the loop project.

ccsl is based on the observation of (Reichel, 1995) that coalgebras can give seman-
tics to classes of object-oriented languages. Jacobs picked this idea up and developed it
further in a series of publications, see (Jacobs, 1995; Jacobs, 1996b; Jacobs, 1997a; Ja-
cobs, 1997b). Some important notions (for instance that of an invariant) and even parts
of the syntax of ccsl can be traced back to this work. An important difference between
this earlier work of Jacobs on coalgebraic specification and the work in the loop project
is, that all work in the loop project is centred around mechanical verification. There
are two reasons for the shift towards mechanical verification. First, software verification
is intrinsically difficult because it involves a large amount of detail, especially many case
distinctions. So to apply software verification to real programs written in a mainstream
programming language (as opposed to academic examples written in a clean academic
programming language) requires tool support. With the right computer support, the
person who carries out the verification can concentrate on the important (and difficult)
parts, while the verification tool carries out simple computations and ensures accuracy
and the correctness of the whole verification.

Secondly also for academic environments and pure science right tool support is im-
portant. It enables the scientist to test his or her results and to get inspiration from
large examples. For instance the work on coalgebraic refinement, presented in (Jacobs
and Tews, 2001), was inspired by a large case study on coalgebraic specification of lists.
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The design goals of ccsl are:

1. to provide a notation for parametrised class specifications based on coalgebras;

2. to provide algebraic specifications of abstract data types based on initial algebras;

3. to use a familiar logic;

4. to restrict expressiveness only when absolutely necessary;

5. to provide theorem proving support.

Let me discuss design goal 5 first. The importance of theorem proving support has been
explained before. In order to provide a theorem proving environment for ccsl there
is the following alternative: On the one hand one can write a special purpose theorem
prover. On the other hand one can develop a front end to existing theorem provers. The
former variant sounds attractive but is (and was) far beyond the man power of the loop
team. In the loop project we therefore chose the latter variant. It has the additional
advantage that we can choose among the available theorem provers and thus profit from
the work that has been spent into these tools.

The front end that connects ccsl with a theorem prover can be seen as a compiler
that translates ccsl into its semantics in higher-order logic. There exists a prototype im-
plementation that supports the two theorem provers pvs (Owre et al., 1996; Owre et al.,
1995) and isabelle/hol in the new style Isar syntax (Nipkow et al., 2002b; Wenzel,
2002) (but see also (Nipkow et al., 2002a; Paulson, 2002)). I refer to this prototype as
the CCSL compiler from now on.

To meet design goals 1 and 2 ccsl contains concrete syntax for algebraic and for
coalgebraic signatures. The concrete syntax for coalgebraic signatures uses terminology
from object-oriented programming, for instance coalgebraic operations are declared with
the keyword METHOD. With coalgebraic signatures one cannot describe the construction of
new objects. Therefore class signatures in ccsl contain a degenerated algebraic signature
(describing the constructors) in addition to the coalgebraic signature.

For design goal 2 ccsl currently supports only abstract data type specifications in
the sense of the present thesis. That is, the abstract data types of ccsl do neither contain
axioms nor equations. Both pvs and isabelle/hol have extensions for the definition of
abstract data types (without axioms). So it is straightforward to translate the abstract
data types of ccsl into pvs and isabelle. To incorporate algebraic specifications into
ccsl it would be necessary to define their semantics in higher-order logic. The problem
here is that, although it is well known how to translate algebraic specifications into
higher-order logic, this is quite a bit of work. Besides, such a translation has been
done before (for instance for casl in the common framework initiative (Mosses, 1997),
see (Mossakowski, 2000)) and one cannot expect many new insights. It is very difficult
to get this kind of work done in an academic environment.

A specification language comes always equipped with some kind of logic. A variety
of different logics for coalgebras have been developed so far. One idea is that coalgebraic
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logic should be based on coequations, which are dualized equations. This approach is
for instance pursued in (Corradini, 1998; Ĉırstea, 1999). Other work proposes different
modal logics, see for instance (Moss, 1999; Kurz, 2000; Rößiger, 2000a; Hughes, 2001).
However, the work on modal logic for coalgebras is mostly driven by purely mathemat-
ical interests. The resulting logics are not well-suited for a specification language. The
most modest approach for a coalgebraic logic considers coalgebraic signatures as special
polymorphic signature and uses traditional first-order equational logic over these signa-
tures (see for instance (Jacobs, 1996b; Kurz, 1998)). Such an equational logic is already
sufficient for many examples. In the loop project we decided to use a higher-order
equational logic to gain expressiveness.

Higher-order equational logic is certainly a well-known logic, as demanded by design
goal number 3. It makes the semantics of ccsl specifications easy to understand. This
way the user can devote his attention on the properties instead on how to express them.

With the choice of higher-order logic we deliberately neglected some proof theoretic
issues. For instance there does not exist a complete derivation system for the logic of
ccsl. In contrast, (Corradini, 1998), (Ĉırstea, 1999), and also (Rößiger, 2000a) restrict
their coalgebraic signatures and obtain a complete derivation system for their logics. As
usual in interactive theorem proving, the lack of a completeness theorem has never been
a problem in our case studies. In contrast, the additional expressivity of our notion of
coalgebraic class signatures and of our logic turned out to be very useful. Similarly other
famous negative results for higher-order logic, like the undecidability of unification, have
never posed any problems.

The design goal number 4 is probably the most debatable one. Because of the ex-
pressiveness of ccsl an user can easily write inconsistent specifications. Further, it is
possible to construct coalgebraic signatures that correspond to functors whose proper-
ties have not been investigated (yet). There are two arguments here. The first one is
about correctness: Whatever the user writes in ccsl, the final working environment is
either pvs or isabelle. Because the translation of ccsl uses almost no axioms1 any
inconsistency that passes the ccsl compiler is finally caught in the theorem prover. The
bottom line here is that one can rest on the correctness of the theorem prover.

The second argument is that ccsl is a research tool that helps to explore the fasci-
nating world of coalgebraic specification. If we exclude from ccsl everything that is not
well understood then we cannot use it for future research.

Figure 4.1 depicts the working environment for coalgebraic specification when using
ccsl. The ccsl compiler reads files containing coalgebraic specifications and produces
output for either pvs or isabelle/hol (depending on a command line switch). The
produced output can be directly loaded into pvs or isabelle. In the following I refer to

1The exceptions are the axioms about the existence of loose and final models that facilitate aggregation.
Subsection 4.7.3 gives guidelines on the use of the generated theories that ensure that these axioms
cannot introduce inconsistencies.
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Figure 4.1.: Working environment with ccsl

the chosen proof environment as the (target) theorem prover. The formulae one wants
to prove and the models are usually formulated in the logic of the target theorem prover.

Internally the ccsl-compiler uses an abstract representation of higher-order logic, so
that a third theorem prover could easily be supported by adding a new pretty-printing
module that translates the abstract representation into the concrete syntax of the new
theorem prover. For the work on Java and JML in the loop project a similar compiler
has been developed (van den Berg and Jacobs, 2001) that translates Java (respectively
JML) into pvs or isabelle. Initially the compiler for Java and JML was derived from
an early version of the ccsl compiler. At the moment both tools are separate programs
that share parts of the internal data structures and a few modules (for instance the
pretty printers for pvs and isabelle/hol).

Some of the material of this chapter appeared partially already somewhere else. A
simplified version of ground signatures and coalgebraic class specifications (without a
proper treatment of variances) appeared originally in (Rothe et al., 2001). An even sim-
pler version that might be called first order coalgebraic class specification without binary
methods can be found in (Tews, 2000a). The ccsl grammar is taken from the ccsl refer-
ence manual (Tews, 2002a). In comparison with these cited papers this chapter presents
the syntax and the semantics of ccsl and its coalgebraic and type theoretic foundations
together. Moreover, the material is presented here without the simplifications that were
necessary because of the available space and the expected audience in (Rothe et al.,
2001) and (Tews, 2000a).

In describing the semantics of ccsl I am facing the following problem: The semantics
of coalgebraic class specifications and that of abstract data type specifications are mu-
tually dependent. Therefore I first describe ground signatures and their models. In the
beginning it will be a bit unclear, where the items in the ground signature come from and
how they get their semantics. After that I describe the semantics of class specifications
and abstract data type specifications with respect to a given ground signature (and a
model of it). In the end I close the circle with the discussion of iterated specifications:
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There I show how class specifications and abstract data type specifications extend the
ground signature with new types and constants.

This chapter is structured as follows: Each section introduces one syntactic category
or a specific problem of ccsl. The first section is on types. Section 4.2 is on variance
checking. Then I define ground signatures and coalgebraic class signatures. Section 4.5
explains the higher-order logic of ccsl and Section 4.6 defines abstract data type spec-
ifications. Section 4.7 discusses iterated specifications. The following sections are less
formal, Section 4.8 discusses the object-oriented features of ccsl and Section 4.9 com-
bines a few minor topics that do not fit somewhere else. Section 4.10 presents applica-
tions of ccsl. In the last section of this chapter I summarise and discuss related work.
Most of the sections contain a subsection that describes the concrete ccsl syntax. For
convenience the complete ccsl syntax is indexed in the subject index and collected in
Appendix B.

4.1. The Type Theory of CCSL

In ccsl class specifications (and abstract data types) may depend on type parameters.
For instance, a ccsl specification for the sequences from Section 2.6 depends on one
type parameter, the type of the elements of the sequences. When using the sequences in
subsequent specifications this type parameter must be instantiated with a concrete type.
For ccsl it is therefore necessary to develop a polymorphic type theory. A polymorphic
type theory allows one to model parametric polymorphism in the sense of (Cardelli and
Wegner, 1985). In such a type theory terms may depend on a finite set of type variables
and a finite set of term variables. (Term) judgements are used to formally derive valid
typings for terms. A term judgement consists of four parts, a type variable context, a
term variable context, a term, and a type. A typical example is

α : Type | q : Seq[α] ` next(q) : 1 + α× Seq[α]

It states that, if the variable q has type Seq[α] for an arbitrary type α, then the appli-
cation next(q) has the depicted type. In the derivation system of a type theory one also
has other kinds of judgements, for instance for deriving that a type expression is a valid
type in the system. I introduce these different judgements when they are needed.

In the following I present the type theory for ccsl. It is a specialised version of
the polymorphic type theory λ→ (see Section 3 in (Barendregt, 1992) or Section 8.1
in (Jacobs, 1999a)) enriched with product, coproduct, and exponent types and with
the special types Self and Prop. The type Self represents the state space of classes and
abstract data types. In Section 4.5 I describe a higher-order logic over the type theory
of ccsl. The type Prop will then be the type of propositions. Instead of working with
higher-order signatures as (Jacobs, 1999a) does, I prefer to formalise Prop as a special
type.

In the type theory of ccsl type constructors will play an important role. A type
constructor can be thought of as a function that acts on types. A typical example is
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the type constructor list that builds the type list[τ ] of (finite) lists over τ for any type
τ . The number of arguments that a type constructor takes is called the arity of the
type constructor. Type constructors of arity 0 (i.e., those that take no arguments) are
type constants such as N for the natural numbers. Type constructors are the technical
means to extend the specification environment. The technical details about this are in
Section 4.7, but it is good to have a rough idea about what is going on.

Each ccsl specification consists of a finite list S1, . . . ,Sn of ground signature exten-
sions (Section 4.3), coalgebraic class specifications (Sections 4.4 and 4.5), and abstract
data type specifications (Section 4.6). Each of the Si is relative to a ground signature
Ωi and every Si can define type constructors, constants, and functions. The newly de-
fined items are added to Ωi to yield Ωi+1. This way a specification Si can refer to all
specifications Sj with j < i.

In what follows type constructors are treated as syntactic entities that come along
with a semantics. It might help to think of type constructors as resulting from a data
type specification (such as finite lists or binary trees) or a process type specification (such
as possibly infinite sequences) that already has been processed by the ccsl compiler.

4.1.1. Kinds

Kinds are used to distinguish types from type constructors and to count the type argu-
ments of the type constructors. So kinds are natural numbers. (Other pure type systems,
for instance λω allow more complex kinds and also type variables of complex kinds,
compare (Barendregt, 1992) or (Jacobs, 1999a).) In judgements I use outlined lower-
case letters like k for kinds. Ordinary types have kind 0. To improve readability I write
σ : Type instead of σ : 0. Type constructors that take n arguments will have kind n.
Kind judgements have the form

` k : Kind

They state that k is a valid kind (i.e., a natural number).

4.1.2. Types

Types are built from type variables and type constructors including product types,
coproduct (or sum) types, and exponent types. I use lowercase Greek variables like
α, β, . . . to denote type variables. A type variable context is a finite list of type variables.
I assume that all type variables in a context are distinct. This can formally be ensured
by using only type variables α1, α2, . . . , but I would like to ignore these technicalities. In
the type theory λ→ type variables are place holders for types only (and not for arbitrary
type constructors). To emphasise this I write type contexts as α1 : Type, α2 : Type, . . .
with the explicit kind Type. Arbitrary types are denoted with lower case Greek variables
like τ, σ. I use type judgements to formally derive all types. A type judgement has the
form

Ξ ` τ : k or Ξ ` τ : Type
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where Ξ is a type variable context, τ is a type expression containing only type variables
from Ξ, and k is a valid kind. Such a type judgement states that τ is a type constructor
of kind k (or an ordinary type, if k = Type).

Type constructors, which can be used to build composite types, are given as part of
a ground signature (see Definition 4.3.1 on page 144 below). A type constructor C of
kind (or arity) k for a valid kind k is given as a judgement

` C : k

Type constructors of arity 0 will be called type constants. I assume a set C of type
constructors in the following.

Definition 4.1.1 (Types) The types over a set of type constructors C are finitely gen-
erated as the least set including

• α for a type variable α : Type

• K for a type constant ` K : Type in C

• C[τ1, . . . , τk] for a type constructor ` C : k in C and types τ1, . . . , τk

• Self, the special type that stands for the carrier set of class specifications and
abstract data type specifications

• Prop, the type of propositions

• 1, the unit type and 0 the empty type

• the product τ × σ, the coproduct τ + σ, and the exponent τ ⇒ σ for types τ and
σ

Figure 4.2 contains a derivation system that allows one to derive a judgement
Ξ ` τ : Type precisely if τ is a type according to the preceding Definition with type
variables Ξ.

In the following I assume that the product and the coproduct of types is associative
(i.e., (τ1 × τ2) × τ3 ∼= τ1 × (τ2 × τ3) and (τ1 + τ2) + τ3 ∼= τ1 + (τ2 + τ3)). I assume
further the isomorphisms 1 ⇒ τ ∼= τ and τ × 1 ∼= τ . The semantics of types
(Definition 4.2.5 on page 139) will ensure that the corresponding interpretations are
isomorphic collections of sets. The exponent ⇒ is assumed to associate to the right, that
is τ1 ⇒ τ2 ⇒ τ3 = τ1 ⇒ (τ2 ⇒ τ3). I omit parenthesis in the following when they do
not contribute to readability.
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kinds

` Type : Kind
` k : Kind

` k+ 1 : Kind

type variable

Ξ ` α : Type
α ∈ Ξ

Self

Ξ ` Self : Type

Prop

Ξ ` Prop : Type

type constructor

` k : Kind Ξ ` σ1 : Type · · · Ξ ` σk : Type

Ξ ` C[σ1, . . . , σk] : Type
for C : k in C

product type

Ξ ` 1 : Type
Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ × σ : Type

coproduct type

Ξ ` 0 : Type
Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ + σ : Type

exponent type
Ξ ` τ : Type Ξ ` σ : Type

Ξ ` τ ⇒ σ : Type

The following two rules are not necessary to build all possible types, but sometimes it is
convenient to use them. They can be derived by induction on the structure of derivations.

type context weakening

Ξ ` τ : Type
Ξ, α : Type ` τ : Type

α /∈ Ξ

type substitution

Ξ, α : Type ` τ : Type Ξ ` σ : Type

Ξ ` τ [σ/α] : Type

Figure 4.2.: Derivation system for well-formed types over a set of type constructors C.
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4.1.3. Type Expressions in CCSL

ccsl allows all types according to Definition 4.1.1. However there are the following
points to note.

• Kinds do not appear in the concrete syntax of ccsl, the ccsl type checker ensures
that all type constructors get the right number of arguments.

• Type variables appear as normal identifiers, which have been declared as type
parameters.

• There are the two keywords CARRIER and SELF that represent the special type
Self. The keyword CARRIER represents Self in abstract data type specifications (see
Section 4.6), inside class specifications (Section 4.4) one has to use SELF.

• ccsl allows n-ary product types σ1 × · · · × σn. Further, the product of types
σ1 × · · · × σn is written with brackets [σ1, . . . , σn] like in pvs.

• The binary coproduct and the unit type are formalised as abstract data types,
which are defined in the ccsl prelude (see Section 4.9.8). So there is no concrete
syntax for unit and coproduct.

• The empty type is not available for the isabelle back end of ccsl. For the pvs
back end the empty type is declared in the prelude.

• The type Prop is called bool, it is built-in into the ccsl compiler.

The grammar of ccsl is given in a BNF–like notation. Brackets [ . . . ] denote op-
tional components, braces {|. . . |} denote arbitrary repetition (including zero times), and
parenthesis ( . . . ) denote grouping. Terminals are set in UPPERCASE TYPEWRITER, non–
terminals in lowercase slanted. The terminal symbols for parenthesis and brackets are
written as (, ), [, and ]. For convenience all keywords and nonterminals of the ccsl
grammar can be found in the subject index.

The concrete syntax for type expressions in ccsl is given by the following BNF rules.

type ::= SELF

| CARRIER

| BOOL

| [ type {| , type |} -> type ]

| [ type {| , type |} ]

| qualifiedid
| identifier argumentlist

argumentlist ::= [ type {| , type |} ]
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The form [σ1, . . . ,σn -> τ] is shorthand for [[σ1, . . . ,σn] -> τ]. Qualified iden-
tifiers are explained in Subsection 4.9.6 below (on page 222). In type expressions a
qualified identifier can be either a simple identifier (referring to a type variable or a type
constant), or an instantiated ground signature name with a type identifier declared in
that ground signature.

4.2. Variance Checking

This section describes the algorithm that computes variances for type variables and for
Self. I follow the ideas from (Schroeder, 1997) but generalise Schroeder’s variances such
that I get information about the deepest nesting level at which a type variable (or Self)
occurs positively and negatively.

Variances are mainly important for the ccsl typechecker. To get a semantics, the
type expressions from a signature are translated to functors. Depending on the variance
of Self one gets a polynomial functor, an extended polynomial functor, or a higher-
order polynomial functor (see Proposition 4.2.8 on page 143). The class of models of the
signature has very different properties depending on the functor (compare Chapter 3).
Another important point is that in abstract data-type definitions only type expressions
with a certain variance are allowed (see Definition 4.6.1 on page 187). The reason for this
restriction is that there is no initial semantics for arbitrary signatures (Gunter, 1992).
Finally, as a minor point, the ccsl compiler generates simpler output in the common
case that a type variable does not occur with mixed variance (compare Proposition 4.2.6
and Subsection 4.2.4 on page 140ff).

In the following I first try to explain variances and the algorithm to compute them
on an intuitive level. A precise definition follows in the first subsection, the development
there is a bit technical, but there is nothing deep behind. To put it a bit sloppy, the
algorithm to compute variances only counts parenthesis.

Informally speaking the variance of a type variable (or of Self) tells us if the type variable
occurs on the left hand side of ⇒, on its right hand side, or on both sides. Let me
anticipate some bits of Definition 4.2.5 (interpretation of types) to explain this problem
in greater detail. Consider type expressions over a set of type constructors that contains
only one constant type, so C = {N : Type}. If we ignore Self and type variables for a
moment we can assign to every type τ a set JτK as its interpretation. We use N, the set
of natural numbers as interpretation of the type constant N and set Jτ �σK = JτK� JσK
for � ∈ {×,+,⇒}. (Here ×,+, and ⇒ denotes the bicartesian closed structure on Set,
that is, the cartesian product, the disjoint union, and the function space, respectively;
see Example 2.2.1 on page 19.)

Assume now that τ contains a type variable: α : Type ` τ : Type. Then its interpre-
tation is a mapping that assigns to each set U , which we choose as an interpretation
for α, the set JτKU . If for instance τ1 = α × N then Jτ1KU = U × N. So the semantics
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of a type that contains type variables is an (set–) indexed collection of sets, where the
indices are the interpretation of the type variables. Consider now two sets U and V as
possible interpretations of α. A function h : U //V gives in a canonical way rise to a
function Jτ1KU

//Jτ1KV . For τ1 this function is given by λx : U ×N . (h(π1 x), π2 x). If,
for a second example, τ2 = N ⇒ α then Jτ2KU = N ⇒ U = {f | f : N //U } and the
function Jτ2KU

//Jτ2KV is given by λf : N //U . h ◦ f .
Complications start if the type variable α occurs on the left hand side of ⇒: Consider

the type τ3 = α⇒ N. This time a function h : U //V induces a function Jτ3KV
//Jτ3KU

in the opposite direction! It is given by λf : V //N . f ◦ h. In this case, where the
induced function goes into the opposite direction, one says that the type variable α
occurs in τ with negative variance or alternatively one says that α occurs in τ at a
negative position. A type variable occurs with positive variance (at a positive position)
if the induced function keeps the direction, as in the preceding paragraph. If the type
variable occurs with negative variance within a type expression that occurs itself at a
negative position, then the type variable has positive variance again. Consider τ4 = (α⇒
N) ⇒ N. As interpretation we have

Jτ4KU = {f | f is a function that maps functions U //N to elements of N}

With a function h : U //V we can build the function

λf : (U ⇒ N) //N .
(
λg : V //N . f(g ◦ h)

)
: Jτ4KU

//Jτ4KV

To distinguish the types τ1 and τ2 from τ4 one says that α occurs in τ1 and τ2 strictly
positively.

A type variable can also occur several times (with different variances) in one type
expression. Consider τ5 = α⇒ (α ×N). To get a function Jτ5KU

//Jτ5KV we need now
two functions h+ : U //V and h− : V //U . The induced function on the interpretation
of τ is

λf : U //U ×N .
[
λv : V .

(
h+(π1(f(h− v))), π2(f(h− v))

)]
A type variable that occurs with both positive and negative variance is said to have
mixed variance.

In general the semantics of types is given by functors. The special type Self serves
as a place holder for the arguments of the functor. So for the type σ1 = Self × N we
get as semantics the functor T1(X) = X × N. And for σ2 = (Self ⇒ N) ⇒ N we get
the functor T2(X) = (X ⇒ N) ⇒ N. In both types σ1 and σ2 the type Self occurs
with positive variance. However T1 is a polynomial functor whereas T2 is a higher-
order polynomial functor. Because polynomial functors and higher-order polynomial
functors have different properties, the ccsl compiler must generate different output,
depending on whether a signature corresponds to a polynomial functor or a higher-
order polynomial functor. So it is not only important if a type variable (or Self) occurs
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positively or negatively, it is also important at which maximum nesting level a type
variable occurs. Therefore I use pairs (u−, u+) of natural numbers to denote variances.
The first component u− denotes the maximum nesting level at which the type variable
occurs at a negative position. The second component u+ denotes the maximum nesting
level for positive occurrences. In the next subsection I formalise these variances as a
special algebra and give an algorithm that computes the variances of the type variables
and of Self in a type expression. In the following I describe informally how variances can
be computed.

To compute the variances of a type expression τ one has to annotate every subex-
pression of τ with a natural number in the following way: The whole type is annotated
with 0, walk now recursively down the structure of τ and increase the current number
every time you pass over to the left hand side of a ⇒. Keep the number constant if you
pass over × or + or if you stay on the right hand side of ⇒. Let me write the annotations
as subscripts to parenthesis, which enclose the subexpressions. Then I get for τ4

(((α)2 ⇒ (N)1)1 ⇒ (N)0)0

Observe that subexpressions at positive positions get even numbers and subexpression at
negative positions get odd numbers. This is because the variance is toggled from positive
to negative and vice versa on the left hand side of ⇒. To get the variance for the type
variable α, pick out the maximum annotation of α for all negative occurrences (i.e., the
maximal odd number for α) and the maximum annotation for all positive occurrences
of α (i.e., the maximal even number). Use ? if the type variable does not occur with the
corresponding variance. So we get that α has variance (?, 2) in τ4. For a more complex
example consider the type expression[[(

(α)3 ⇒ (N)2

)
2
⇒ (α)1

]
1
⇒
[(

(α)2 ⇒ (N)1

)
1
⇒ (α)0

]
0

]
0

Here α has the variance (3, 2).

For the computation of variances also nonconstant type constructors are important.
For the discussion of variances one can think of a type constructor as a macro that can
be expanded into a type expression. For example let

C[α, β]
def
= ((α⇒ β) ⇒ N) ⇒ N

Now we can form the type τ5 = C[Self, α] ⇒ N. After expanding C we can compute the
variances and get that Self occurs in τ5 with variance (?, 4) and α with (3, ?). So for the
first argument of C the variance is toggled and the nesting level is increased by three. To
denote this I say that the first argument of C has variance (3, ?). Similarly, the second
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argument of C has variance (?, 2). A type constructor can also copy its arguments into
a positive and a negative position, for instance:

C′[α]
def
= α⇒ α

Therefore the variance of the only argument of C′ is (1, 0)
For the formal treatment of type constructors I assume that, from now on, type

constructors are given with variance annotation by a sequent

` C :: [(3, ?); (?, 2)]

Formally the variance annotation is a finite list of variances. The length of the list equals
the arity of the type constructor and the elements of the list stand for the variances of
its arguments.

The preceding algorithm to compute variances works only well if all variances of the
type constructor are either of form (?, u+) or of form (u−, ?). For such a type constructor
one adds either u+ or u− to the current number. So in the type expression

(C[(α)4, (α)3])1 ⇒ (N)0)0

α has variance (3, 4). The treatment of arbitrary variances for type constructors does
not really fit in this simplified annotation algorithm. For arbitrary type expressions it is
best to use the algorithm from the next subsection.

I prefer to formalise the product, the coproduct, and the exponent of types and the
type Prop by giving extra rules for them. Alternatively one can consider them as type
constructors with the following variance:

` Prop :: []
` 1 :: []
` 0 :: []
` × :: [(?, 0); (?, 0)]
` + :: [(?, 0); (?, 0)]
` ⇒ :: [(1, ?); (?, 0)]

4.2.1. Formalising Variances

To formalise variance checking I need the natural numbers enriched with an additional

element ?, which is a zero for addition.2 So set N? def
= N ∪ {?} and extend addition to

N? with ? + n = n+ ? = ? for all n ∈ N?. I further extend the order < and make ? the
least element: ∀i ∈ N . ? < i. Now I can use max with the extended natural numbers, for
instance max(?, n) = max(n, ?) = n for all n ∈ N?. Although we saw in the last section
that variances are pairs of an odd and an even number it is technically easier to define
them as pairs of N?.

2Recall that the number zero is a one (i.e., a neutral element) for addition.
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Definition 4.2.1 The variance algebra is the triple (V, ·,∨) such that

• V = N? ×N? is the set of variances, where ? abbreviates (?, ?) ∈ V ,

• · : V × V //V is the substitution operation defined by

(u−, u+) · (v−, v+)
def
=

(
max(u− + v+, u+ + v−), max(u− + v−, u+ + v+)

)
• and ∨ : V × V //V is the join operation given by

(u−, u+) ∨ (v−, v+)
def
=

(
max(u−, v−), max(u+, v+)

)
The set of well-formed variances V ⊆ V is given by

V
def
= {(u−, u+) | (u− = ? or u− is odd) ∧ (u+ = ? or u+ is even)}

In the following I assume that · binds tighter than ∨, so u1 · u2 ∨ u3 = (u1 · u2) ∨ u3.

Lemma 4.2.2

1. (V , ·,∨) is a subalgebra of the variance algebra, that is, both the substitution and
the join operation restrict to V × V //V .

2. (V, ·) forms a commutative monoid with zero element ?.

3. (V,∨) forms a commutative monoid with identity ?.

4. The substitution operation · distributes over ∨, that is u · (v ∨w) = (u · v)∨ (u ·w)

Proof The proofs are straightforward computations, they have all been formalised in
pvs. �

The preceding definition of variances generalises the variances in (Schroeder, 1997).
There, Schroeder uses the finite set {+,−, ∗, ?} as variances, denoting positive, negative,
mixed, and unknown variance, respectively. The substitution and join operations are
given by

· ? + − ∗
? ? ? ? ?
+ ? + − ∗
− ? − + ∗
∗ ? ∗ ∗ ∗

∨ ? + − ∗
? ? + − ∗
+ + + ∗ ∗
− − ∗ − ∗
∗ ∗ ∗ ∗ ∗

There is an algebra morphism from my variances to Schroeder’s variances. It sends (?, ?)
to ?, (?, u+) to +, (u−, ?) to −, and all other elements of V to ∗.
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Next I present the variance checking algorithm. For a type judgement Ξ ` τ : Type
the variance checking algorithm assigns to every type variable α ∈ Ξ and to Self a well-
formed variance from V . I give the algorithm by annotating type judgements and the
derivation system for types from Figure 4.2. Type judgements have now the form

α1 :: v1, . . . , αn :: vn, Self :: v ` τ : Type

for v, v1, . . . , vn ∈ V . It is the formal statement that τ is a type where the type variables
αi have variance vi and Self has variance v in τ . Note that in the above judgement Self
does not belong to the type variable context. It is just that I did not find a better way to
incorporate the variance of Self into judgements. However, the notation is not completely
misleading: Instead of making Self a special type (as I preferred in Definition 4.1.1) one
could formalise Self as a distinct type variable. Indeed, the variance algorithm that
follows treats Self exactly like a type variable.

In the following I assume that the type constructors in C are given with variance
annotations as judgements

` C :: [v1, . . . , vk]

where [v1, . . . , vk] is a finite list of length k over V and k is the arity of C. Type constants
are given as ` K :: [].

Consider the most basic well-formed type Ξ ` α : Type. The type variable α occurs
with variance (?, 0) and all other type variables from Ξ and Self do not occur (so they
have variance (?, ?)). So the new rule for type variables is obviously

type variable

α1 :: ?, . . . , αi−1 :: ?, αi :: (?, 0), αi+1 :: ?, . . . , αn :: ?, Self :: ? ` αi : Type

The rule for type constructors is the most difficult one, so let me postpone it for a
moment. The other obvious rules are those for Self, 1, and 0. In the following rules I
abbreviate an arbitrary type variable context α1 :: u1, . . . , αn :: un by writing αi :: ui.

Self

αi :: ?, Self :: (?, 0) ` Self : Type

unit type

αi :: ?, Self :: ? ` 1 : Type

empty type

αi :: ?, Self :: ? ` 0 : Type

Prop

αi :: ?, Self :: ? ` Prop : Type

The product and the coproduct do not change the variances. We only have to keep
in mind, that in σ× τ every type variable might occur in both types σ and τ , so we have
to join the variances.
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product

αi :: ui, Self :: u ` τ : Type αi :: vi, Self :: v ` σ : Type

αi :: (ui ∨ vi), Self :: (u ∨ v) ` τ × σ : Type

coproduct

αi :: ui, Self :: u ` τ : Type αi :: vi, Self :: v ` σ : Type

αi :: (ui ∨ vi), Self :: (u ∨ v) ` τ + σ : Type

For the exponent σ ⇒ τ we also have to join the variances for each type variable.
Thereby we have to keep in mind that for all type variables in σ the variances flip
around and the nesting level is increased by one. Formally this is done by applying the
substitution operation with (1, ?). Note that (1, ?) · (u−, u+) = (u+ + 1, u− + 1).

exponent type

αi :: ui, Self :: u ` σ : Type αi :: vi, Self :: v ` τ : Type

αi :: ((1, ?) · ui ∨ vi), Self :: ((1, ?) · u ∨ v) ` σ ⇒ τ : Type

The rule for the type constructor is a generalised version of the rule for the exponent.
Assume a type constructor C :: [u1, . . . , uk] in C. Before joining the variances from all
the types σj we have to apply the substitution operation with the variances uj.

type constructor

αi :: v1
i , Self :: v1 ` σ1 : Type · · · αi :: vki , Self :: vk ` σk : Type

αi :: vi, Self :: v ` C[σ1, . . . , σk] : Type

where vi = u1 · v1
i ∨ · · · ∨ uk · vki

v = u1 · v1 ∨ · · · ∨ uk · vk

For completeness I also show the rules for weakening and substitution. Both rules
are derivable.

type context weakening

α1 :: u1, . . . , αn :: un, Self :: u ` τ : Type
α1 :: u1, . . . , αn :: un, αn+1 :: ?, Self :: u ` τ : Type

type substitution

α1 :: u1, . . . , αn :: un, αn+1 :: un+1, Self :: u ` τ : Type

α1 :: v1, . . . , αn :: vn, Self :: v ` σ : Type

α1 :: u1, . . . , αn :: un, Self :: u ` τ [σ/αn+1] : Type

where ui = (un+1 · vi) ∨ ui

u = (un+1 · v) ∨ u
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Vx(x) = (?, 0)

Vx(α) = (?, ?) for x 6= α

Vx(0) = (?, ?)

Vx(1) = (?, ?)

Vx(Prop) = (?, ?)

Vx(Self) = (?, ?) for x 6= Self

Vx(σ1 × σ2) = Vx(σ1) ∨ Vx(σ2)

Vx(σ1 + σ2) = Vx(σ1) ∨ Vx(σ2)

Vx(σ1 ⇒ σ2) = (1, ?) · Vx(σ1) ∨ Vx(σ2)

Vx(C[σ1, . . . , σk]) = u1 · Vx(σ1) ∨ · · · ∨ uk · Vx(σk) for ` C :: [u1, . . . , uk]

Figure 4.3.: A top down algorithm for computing the variance Vx(τ) of type τ with
respect to x

Now it is possible to give a simple and precise definition for the terms positive,
negative and mixed variance.

Definition 4.2.3 Let τ be a type such that Γ, α :: (v−, v+), Self :: (u−, u+) ` τ : Type
is derivable. The type variable α occurs in τ with

• strictly positive variance if v− = ? and v+ ≤ 0

• positive variance if v− = ?

• negative variance if v+ = ?

• mixed variance if v− 6= ? and v+ 6= ?

Similarly for Self and (u−, u+).

4.2.2. Variance Checking in CCSL

For ccsl it is more useful to have an algorithm that works top–down (instead of bottom–
up like a derivation system). Let x be Self or a type variable. Then Vx(τ) denotes the
variance of x in τ . It is defined by induction on the structure of τ , see Figure 4.3.

Proposition 4.2.4 The function Vx computes the variances as defined by the derivation
system. More precisely, let τ be a type that contains the type variables α1, . . . , αn. Then
one can derive the following judgement:

αi :: Vαi
(τ), Self :: VSelf(τ) ` τ : Type

Further Vβ(τ) = (?, ?) if β /∈ {α1, . . . , αn}.
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Proof By induction on the structure of types. The induction steps are immediate. �

The function Vx can be further optimised into a tail-recursive function by storing
the variance of the type variable or of Self in a reference cell. This reference cell will be
initialised with ?, the neutral element for ∨. Then the equations from Figure 4.3 can
be transformed into tail recursive form because · distributes over ∨ (Lemma 4.2.2 (4)).
This tail-recursive variant of the equations in Figure 4.3 is used in the ccsl-compiler.

The variances presented here are not sufficient to distinguish extended cartesian
functors from extended polynomial functors. The ccsl compiler uses an additional check
to determine if a type corresponds to an extended cartesian functor.

Variances appear in ccsl specifications as annotations to type parameters. They
restrict the variance of the annotated type parameter. Their concrete syntax is as follows.

variance ::= POS

| NEG

| MIXED

| ( numberorquestion , numberorquestion )

numberorquestion ::= ?

| number

In addition to the variances of Definition 4.2.1 the ccsl compiler recognises the
keywords POS, NEG and MIXED as variances. These latter three variances denote an infinite
nesting level and must be used for type constructors of ground signatures. The compiler
extends the join and substitution of variances in the obvious way, for instance POS ∨
(?, 2) = POS, POS ∨ (3, ?) = MIXED, and POS · (3, ?) = NEG. Variances given as a pair of
numbers (or question marks) must be proper variances.

4.2.3. Semantics of Types

The discussion on negative variances at the beginning of this section showed that for
the semantics of types some notions (for instance the map–combinator) differ with re-
spect to the variance of type variables. Here I take the general approach and develop
a semantics for types under the assumption that all type variables and Self occur with
mixed variance. For type variables that occur only with positive or negative variance
considerable simplifications are possible, see the lemmas below and the next subsection.
For the semantics of types I thereby deliberately deviate from the ccsl compiler at the
advantage of a clearer presentation.

In the standard case every type Ξ ` τ : Type gives rise to an indexed collection of
functors (

JτKU−1 ,U+
1 ,U−2 ,U+

2 ,...,U−n ,U+
n

: Setop × Set //Set
)

U−i ,U+
i ∈ |Set|

where n is the number of type variables in Ξ. The indices U−
1 , . . . , U

+
n are sets for the

interpretation of the type variables. The set U−
i is used for the negative occurrences of
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αi and U+
i for the positive ones. The arguments of the functor itself are used for the

negative and positive occurrences of Self, respectively. In the following I abbreviate the
list of indices as U

−/+
i if there is no danger of confusion.

The standard case, to which I refer in the previous paragraph, is the case where for
every type constructor of arity k there is an interpretation functor taking 2k arguments.
The arguments are doubled to separate them into positive and negative occurrences.
The following definition deals with the standard case only, I discuss some abnormalities
below.

Definition 4.2.5 (Interpretation of Types) Let C be a set of type constructors.

1. Let ` C :: [v1, . . . , vk] be a type constructor of arity k and let (−)k denote the
k–fold product. An interpretation of C is a functor

JCK : (Setop × Set)k //Set

if, for arbitrary sets V, V ′, U1, . . . , U2n, it has the following property

• if the i-th argument of C has positive variance then JCK is constant in its
(2i− 1)-th argument (which interprets the negative occurrences of the i-th
argument):

JCK(U1, . . . , U2i−2, V, U2i, . . . ,U2n) =

JCK(U1, . . . , U2i−2, V
′, U2i, . . . , U2n)

• if the i-th argument of C has negative variance then JCK is constant in its
2i-th argument (interpreting the positive occurrences of the i-th argument).

• if the i-th argument of C has unknown variance then JCK is constant in both
its (2i− 1)-th and its 2i-th argument.

2. Let α1, . . . , αn ` τ : Type be a type with type constructors from C. Assume that
for every C ∈ C we have an interpretation JCK. The interpretation of τ is defined
by induction on the structure of types.

JαiKU−1 ,...,U+
n
(Y,X) = U+

i

JSelfKU−1 ,...,U+
n
(Y,X) = X

J1KU−1 ,...,U+
n
(Y,X) = 1 = {∗}

J0KU−1 ,...,U+
n
(Y,X) = 0 = ∅

JPropKU−1 ,...,U+
n
(Y,X) = bool = {⊥,>}

Jσ1 + σ2KU−1 ,...,U+
n
(Y,X) = Jσ1KU−1 ,...,U+

n
(Y,X) + Jσ2KU−1 ,...,U+

n
(Y,X)

Jσ1 × σ2KU−1 ,...,U+
n
(Y,X) = Jσ1KU−1 ,...,U+

n
(Y,X) × Jσ2KU−1 ,...,U+

n
(Y,X)
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Jσ1 ⇒ σ2KU−1 ,...,U+
n
(Y,X) = Jσ1KU+

1 ,U−1 ,U+
2 ,U−2 ,...,U+

n ,U−n
(X, Y ) ⇒

Jσ2KU−1 ,U+
1 ,U−2 ,U+

2 ,...,U−n ,U+
n
(Y,X)

JC[σ1, . . . , σk]KU−1 ,...,U+
n
(Y,X) = JCK

(
Jσ1KU+

1 ,U−1 ,U+
2 ,U−2 ,...,U+

n ,U−n
(X, Y ),

Jσ1KU−1 ,U+
1 ,U−2 ,U+

2 ,...,U−n ,U+
n
(Y,X),

...

JσnKU+
1 ,U−1 ,U+

2 ,U−2 ,...,U+
n ,U−n

(X,Y ),

JσnKU−1 ,U+
1 ,U−2 ,U+

2 ,...,U−n ,U+
n
(Y,X)

)
The morphism part is defined in the obvious way (by replacing Y and X with
suitable functions f− and f+).

Observe how the indices and the arguments for positive and negative occurrences
are flipped around on the left hand side of the exponent and in the arguments for the
functor JCK.

The interpretation of a type τ containing n type variables can be extended (in the
obvious way) to a functor taking 2n + 2 arguments. Its morphism part is denoted with
JτKg(f

−, f+) for a suitable list of functions g = g−1 , g
+
1 , . . . , g

−
n , g

+
n .

Under certain circumstances (occurring in conjunction with iterated specifications,
see Section 4.7) for some type constructor C only the object mapping of an interpretation
functor might be available (i.e., there is no morphism part for JCK). In this case the
interpretation JτK degrades to an indexed collection of mappings |Set| × |Set| //|Set| .

In even more obscure cases the interpretation JCK(· · ·U−
i , U

+
i · · · ) of a type construc-

tor is only defined if the respective arguments for positive and negative occurrences are
equal, that is if U−

i = U+
i for all i. In this case the interpretation JτK···U−i ,U+

i ···
(Y,X) is

only defined for Y = X and U−
i = U+

i .
If Self occurs in τ with positive variance then the first argument is ignored for every

functor in the collection (JτK). In this case the interpretation functors factor through
π2 : Setop × Set //Set . Similarly the second argument is ignored if Self occurs in τ

with negative variance. Some of the indices U
−/+
i are ignored if not all type variables

occur with mixed variance in τ .

Proposition 4.2.6 Let α1, . . . , αn ` τ : Type be a type as before. Let V and V ′ be
arbitrary sets.

• If Self occurs in τ with positive variance, then

JτKU−1 ,...,U+
n
(V,X) = JτKU−1 ,...,U+

n
(V ′, X)

• If Self occurs in τ with negative variance, we have

JτKU−1 ,...,U+
n
(Y, V ) = JτKU−1 ,...,U+

n
(Y, V ′)
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• Assume the type variable αi has positive variance in τ . Then

JτKU−1 ,...,V,U+
i ,...,U+

n
(Y,X) = JτKU−1 ,...,V ′,U+

i ,...,U+
n
(Y,X)

• And if αi has negative variance then

JτKU−1 ,...,U−i ,V,...,U+
n
(Y,X) = JτKU−1 ,...,U−i ,V ′,...,U+

n
(Y,X)

Proof By induction on the structure of types. �

For a type σ that does not contain Self every functor in the interpretation JσK is a
constant functor (i.e., the result does not depend on the arguments). Therefore I write
for the interpretation of such types JτKU−1 ,...,U+

n
instead of JτKU−1 ,...,U+

n
(Y,X). The indexing

with the interpretations for the type variables looks complicated but is in fact a rather
simple idea. After one got used to this concept the complicated notation distracts from
the interesting points. In following sections I will therefore sometimes drop these indexes
and simply write JτK for a fixed interpretation of the type variables and of Self.

4.2.4. Separation of Variances

In this subsection I explain how the ccsl compiler deals with type variables with mixed
variance. It is possible to skip this subsection and return later, if questions about this
issue remain open.

Ideally the ccsl compiler should implement the semantics of types of Definition 4.2.5
literally. It should do a variance analysis on the input and separate all type variables
into their positive and negative occurrences. However, there are the following problems
with such a rigorous approach: First, very often there is no type variable with mixed
variance in a specification. For this common case Proposition 4.2.6 shows that many
of the indices (that interpret a particular variance of a type variable) are superfluous.
These superfluous items would probably confuse the users of ccsl. Almost certainly pvs
would get confused. The second problem is that it is not possible to separate variances
in the semantics of ccsl’s logic (described in Section 4.5).

For these reasons the ccsl compiler generally uses only one interpretation for any
type variable. If the type variable occurs only positively or only negatively it is otherwise
correctly handled according to Definition 4.2.5. For a type expression that contains a
type variable αi with mixed variance the morphism part of the semantics stays undefined.
Further, for the object part of the semantics the compiler assumes that the arguments for
positive and negative occurrences of αi are equal, that is that U+

i = U−
i . If a type variable

with mixed variance poses problems then the compiler issues a warning. For data type
specifications and for class specifications without assertions the user can easily separate
himself the type variable with mixed variance into a positive and a negative one.

The special type Self is always handled in a correct way (even if it occurs with mixed
variance). This ensures that the ccsl compiler generates the correct notion of coalgebra
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morphism for class signatures as long as for all type constructors the morphism part of
their semantics is defined.

Predicate and relation lifting (defined in Subsection 4.4.1 below) are treated dif-
ferently. For type variables that occur only positively or only negatively the compiler
uses one parameter predicate for predicate lifting. So for those type variables there is
no separation. However, a type variable that has mixed variance is separated into its
positive and its negative positions. For such a type variable the compiler introduces two
predicates in the generated code. This guarantees that the definitions for predicate lift-
ing and invariant are correctly generated for all class specifications. Relation lifting is
treated analogously. Therefore the generated notions of relation lifting and bisimulation
are correctly generated as long as the greatest bisimulation does exists.

4.2.5. Classification of Types

Types are classified according to the variance of Self. Via the interpretation of types
there is a correspondence with the classification of functors into polynomial, extended
polynomial, and higher-order polynomial functors.

Definition 4.2.7 Let C be a set of type constructors with variance annotations and let
τ be a type over C.

1. τ is a constant type if VSelf(τ) = ?.

2. τ is a polynomial type if Self occurs only at strictly covariant positions in τ , that
is if VSelf(τ) = (?, u+) for u+ ≤ 0.

3. τ is an extended polynomial type if VSelf(τ) = (u−, u+) for u− ≤ 1 and u+ ≤ 0.

4. τ is a higher-order polynomial type, if it is not extended polynomial.

5. τ is a constructor type in case τ = σ ⇒ Self and σ is a polynomial type.

6. τ is a constant constructor type if τ = σ ⇒ Self is a constructor type and if
additionally σ is a constant type.

7. τ is a method type if τ = (Self × σ) ⇒ ρ.

8. A method type τ = (Self × σ) ⇒ ρ is a polynomial/extended-polynomial/higher-
order polynomial method type if σ ⇒ ρ is a polynomial/extended-polynomial/
higher-order polynomial type.

Note that via the isomorphism τ × 1 ∼= τ and the associativity of × also Self ⇒ ρ
and Self × σ1 × · · · × σn ⇒ ρ are method types for arbitrary σ, σ1, . . . , σn, ρ. Via the
isomorphism 1 ⇒ τ ∼= τ the type Self is a constant constructor type.
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With the formalisation of variances it is now possible to define the term binary
method precisely. A method of type Self × σ ⇒ ρ is called a binary method, if Self
occurs with negative variance in σ ⇒ ρ. Note that in this case Self × σ ⇒ ρ cannot be a
polynomial method type. However not every method of extended-polynomial or higher-
order polynomial type is also a binary method. For ccsl the classification of methods
into binary and unary methods is not really important. Here only the classification of
Definition 4.2.7 is significant.

The use of the attributes polynomial, extended polynomial and higher-order to clas-
sify types is justified by the following proposition.

Proposition 4.2.8 Assume that C contains only type constants and let α1, . . . , αn ` τ :
Type be an arbitrary type over C. Let F = JτKU−1 ,...,U+

n
be the interpretation functor for

fixed sets U−
1 , . . . , U

+
n . The type τ is a

constant
polynomial
extended-polynomial
higher-order

 type precisely if F is a


constant
polynomial
extended-polynomial
higher-order

 functor.

Proof By induction on the structure of τ . �

The restriction in the preceding proposition that τ does not contain any noncon-
stant type constructor is rather severe. The weak requirements for the interpretation
of nonconstant type constructors do not allow one to derive anything in general. For
the ccsl compiler the situation is slightly better: The compiler can keep track of type
constructors that stem from a processed class or data type specification. Types that
contain such type constructors give rise to data functors in the sense of (Hensel, 1999),
but see also (Hensel and Jacobs, 1997; Rößiger, 1999). I discuss this issue in Section 4.7
on iterated specifications.

4.3. Ground Signatures

In this section I define (polymorphic) ground signatures. Ground signatures are used
to declare types, functions, and constants that are available in the specification envi-
ronment. For instance one usually expects that the natural numbers N with addition
and multiplication are available. In ccsl ground signatures also serve a second purpose:
They make iterated specifications (Section 4.7) possible.

The logic that I define in Section 4.5 places a few restriction on ground signatures
and their models. For the semantics of behavioural equality and of modal operators every
type constructor (of arity greater than zero) in the ground signature must be equipped
with two special constants: predicate and relation lifting. This requirement is captured
with the notion of proper ground signatures.
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Definition 4.3.1 (Ground Signature)

• A ground signature Ω consists of

– a set |Ω| of type constructors with variance annotations,

– an indexed set (Ωσ) of constant symbols for each constant type σ over |Ω|. A
constant symbol f ∈ Ωσ is given as a (term) judgement Ξ | ∅ ` f : σ where σ
is a constant type such that Ξ ` σ : Type is derivable.

• A ground signature is called plain if the set |Ω| contains only type constants (i.e.,
type constructors of arity zero).

• A ground signature is called proper if the set of constant symbols contains at least
the following two symbols for every type constructor C ∈ |Ω| of arity k

α1, . . . , αk | ∅ ` PredC : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ C[α1, . . . , αk] ⇒ Prop

α1, . . . , αk, β1, . . . βk | ∅ ` RelC : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ C[α1, . . . , αk]× C[β1, . . . , βk] ⇒ Prop

The constant PredC is the predicate lifting of C and RelC is its relation lifting. Note
that both take 2k arguments. This is necessary to separate co– and contravariant
occurrences.

Example 4.3.2 The ccsl compiler starts with an empty ground signature. Before the
user file is read the ccsl prelude is processed (see also Subsection 4.9.8). This prelude
is a valid ccsl string, which is hard wired into the compiler. So the user file is opened
with a (proper) ground signature ΩP that contains the declarations from the prelude.

The signature ΩP contains the following type constructors3

` list : [(?, 0)]

` Lift : [(?, 0)]

` Coproduct : [(?, 0); (?, 0)]

` Unit : []

` EmptyType : []

The intended semantics (which is ensured by the ccsl compiler in cooperation with the
target theorem prover) is that list constructs the finite lists over a given type, Lift[α] is

3The type constructor EmptyType is not defined for the isabelle back end.
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an abbreviation for α+ 1 and Coproduct[α, β] = α+ β. The type constructors Unit and
EmptyType give the two special types 1 and 0, respectively. The type constructor Lift is
used in ccsl to model partial functions. The coproduct is in the prelude because there
is no special syntax for the coproduct of types in ccsl.

Besides the predicate and relation lifting of the three type constructors the ground
signature ΩP contains the following constants:4

α : Type | ∅ ` null : list[α]

α : Type | ∅ ` cons : α× list[α] ⇒ list[α]

α : Type | ∅ ` null? : list[α] ⇒ Prop

α : Type | ∅ ` cons? : list[α] ⇒ Prop

α : Type | ∅ ` bot : Lift[α]

α : Type | ∅ ` up : α⇒ Lift[α]

α : Type | ∅ ` bot? : Lift[α] ⇒ Prop

α : Type | ∅ ` up? : Lift[α] ⇒ Prop

α : Type, β : Type | ∅ ` in1 : α⇒ Coproduct[α, β]

α : Type, β : Type | ∅ ` in2 : β ⇒ Coproduct[α, β]

α : Type, β : Type | ∅ ` in1? : Coproduct[α, β] ⇒ Prop

α : Type, β : Type | ∅ ` in2? : Coproduct[α, β] ⇒ Prop

∅ | ∅ ` unit : Unit

α : Type | ∅ ` empty fun : EmptyType ⇒ α

The constants null, cons, unit, up, in1, in2, and unit are the expected constructors and
injections. The other constants are recogniser predicates. The predicate cons?, for in-
stance, is true for a list l if l = cons(a, l′) for some a and l′. Similarly for the other
recognisers.

In applications it is nice to have also accessor functions, like car : List[α] /α , which
delivers the head for nonempty lists. Accessors are usually partial functions (depicted as
partial arrow / ). The type theory that I developed in this chapter deals (for simplicity)
only with total functions. So formally car cannot be incorporated as a constant of type
List[α] ⇒ α without leading to inconsistencies. However, the ccsl compiler is a bit more
relaxed and declares also the following accessors:

α : Type | ∅ ` car : list[α] ⇒ α

α : Type | ∅ ` cdr : list[α] ⇒ list[α]

4In pvs identifiers can contain question marks. The same applies to ccsl. When generating output
for isabelle the names for the recognisers are is null, is cons, and so on. Further for isabelle the
native isabelle constructor names Nil and Cons are used for lists.
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α : Type | ∅ ` down : Lift[α] ⇒ α

α : Type, β : Type | ∅ ` out1 : Coproduct[α, β] ⇒ α

α : Type, β : Type | ∅ ` out2 : Coproduct[α, β] ⇒ β

The ccsl type checker treats accessors (erroneously) as total functions. There are no
consistency problems for the following reasons: pvs has a type theory with predicate
subtypes. There the accessor car is a total function, which has the subtype of nonempty
lists as domain. The ccsl compiler uses this correctly typed function as semantics of
car. The theorem prover isabelle/hol has no predicate subtypes but its semantics
is based in the hol tradition (Gordon and Melham, 1993) on an universe of nonempty
sets. Consequently isabelle/hol does not allow for empty types and there is the special
constant arbitrary that inhabits every type.5 If the ccsl compiler generates output for
isabelle/hol then as semantics for car it takes a function that returns arbitrary for the
empty list. �

A model of the ground signature contains functors, (polymorphic) functions and
constants that can be used to interpret the syntactic symbols in the ground signature.
For proper models of proper ground signatures I require two basic properties for the
interpretation of predicate and relation lifting. Namely that predicate lifting commutes
with truth and that relation lifting commutes with equality in the sense of Lemma 3.3.2.

Definition 4.3.3 (Model of Ground Signature)

• Let Ω be a ground signature. A model of it consists of

– the object part of an interpretation functor JCK for every type constructor
C ∈ |Ω|,

– an indexed family of functions or constants

JfKU1,U2,...Un : JσKU1,U1,U2,U2,...,Un,Un

for every constant symbol α1, . . . , αn | ∅ ` f : σ in Ω.

• A model of a proper ground signature is called proper if all the interpretations JCK
are functors and if additionally the following condition is satisfied: For all type
constructors C ∈ |Ω| of arity k it holds that

JPredCKU1,...,Uk(>U1 ,>U1 , . . . ,>Uk ,>Uk) = >JCK(U1,U1,...,Uk,Uk)

JRelCKU1,...,Uk,U1,...,Uk(Eq(U1),Eq(U1), . . . ,Eq(Uk),Eq(Uk)) =

Eq(JCK(U1, U1, . . . , Uk, Uk))

5The constant arbitrary is neither in (Nipkow et al., 2002a) nor in (Nipkow et al., 2002b) described.
See the file src/HOL/HOL.thy in the isabelle distribution.
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The two conditions on proper models of ground signatures ensure that also in the
presence of type constructors predicate lifting commutes with truth and relation lifting
with equality (see Lemma 4.4.9 on page 157 below). In turn this implies that truth
is an invariant and equality is a bisimulation (see Proposition 4.4.11 on page 158).
On type constants K these two conditions have the following effect: PredK = >JKK and
RelK = Eq(JKK). This matches the treatment of constants in predicate and relation lifting
for higher-order polynomial functors.

Example 4.3.4 The model for ΩP maps list to the functor that yields the initial algebra
for the functor FU

list(X) = X × U + 1 for every argument U . For Lift, Coproduct, Unit,
EmptyType and the constant symbols it takes the obvious constructions. The predicate
and relation lifting for Coproduct is given by +P and +R, respectively. Also the liftings
for Lift are obvious: It is PredLift(P ) = P +P>1 and RelLift(R) = R+R Eq(1). The liftings
for list are defined by induction and follow the general description in Section 4.7 below
(I ignore the contravariant arguments):

JPredlistK(P )(null) = >
JPredlistK(P )(cons(a, l)) = P (a) ∧ JPredlistK(P )(l)

JRellistK(R)(null, null) = >
JRellistK(R)(cons(a, l), null) = ⊥
JRellistK(R)(null, cons(a, l)) = ⊥

JRellistK(R)(cons(a, l), cons(a′, l′)) = R(a, a′) ∧ JRellistK(R)(l, l′) �

The ground signature describes types and operations that are available in the envi-
ronment. So usually a model for it is provided (automatically) by the environment. The
ccsl compiler for instance assumes that all symbols in the ground signature are defined
in the target theorem prover. Therefore it treats symbols from the ground signature
literally: their semantics is the same symbol again. In the following sections I assume
a proper ground signature Ω and a proper model MΩ of it. Types that appear will be
types over |Ω| and their interpretation will be the interpretation with respect to MΩ.

4.3.1. Ground Signatures in CCSL

Ground signatures in ccsl are actually ground signature extensions. As explained be-
fore the ccsl compiler keeps a current ground signature while parsing the source file. A
ground signature declaration extends this current ground signature with type construc-
tors and constants. These items must be defined either in the ground signature itself or
in the target theorem prover. The concrete grammar is as follows.

groundsignature ::= BEGIN identifier [ parameterlist ] : GROUNDSIGNATURE

{| importing |} {| signaturesection |}
END identifier
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parameterlist ::= [ parameters {| , parameters |} ]

parameters ::= identifier {| , identifier |} : [ variance ] TYPE

A Ground signature (extension) starts with the keyword BEGIN, followed by the
name of the ground signature, an optional (global) type parameter list and the keyword
GROUNDSIGNATURE. The type parameters build a type variable context for all declara-
tions in the ground signature. In ccsl it is necessary to declare type variables as type
parameters because there is no special syntax to distinguish type variables from other
identifiers.

Any type parameter can get a variance annotation. The variance annotation is com-
pulsory for all type parameters if the ground signature declares a type constructor with-
out giving its definition.

Importing clauses are explained in Subsection 4.9.4. For ground signatures they are
necessary, if the items that are declared in the ground signature require extra theories
to be loaded in the target theorem prover.

The body of a ground signature contains an arbitrary number of sections, declaring
or defining type constructors and (possibly) polymorphic constants or functions.

signaturesection ::= typedef
| signaturesymbolsection [ ; ]

typedef ::= TYPE identifier [ parameterlist ] [ = type ]

signaturesymbolsection ::= CONSTANT termdef {| ; termdef |}
termdef ::= idorinfix [ parameterlist ] : type [ formula ]

idorinfix ::= ( infix operator )

| identifier

Each item in a ground signature can declare additional (local) type parameters in a
separate parameter list. The type variable context of an item is given by the concatena-
tion of the global parameter list with the local parameter list of that item. The local type
parameters are syntactic sugar. They are convenient if only a few items in one ground
signature require additional type parameters.

Type constructors are introduced with the keyword TYPE. The arity of the new type
constructor is defined as the number of the declared (global and local) type parameters.
If the optional type expression is present, then the type constructor is defined in ccsl. In
this case the ccsl compiler derives the variances annotations, the predicate and relation
lifting, and the morphism component of (the semantics of) the type constructor.

If the type constructor is not defined (the optional type expression is left out) then
all type parameter must have variance annotations to allow the compiler to derive the
variance of the type constructor. For such declarations the compiler assumes that the
type constructor and its liftings are defined in the target theorem prover as functions
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Begin SetSig [ U : Neg Type ] : GroundSignature
Type set = [U −> bool]
Constant

empty : set[U]
empty = Lambda(t : U) : false;

intersect : [set[U], set[U] −> set[U]];
(+) : [set[U], set[U] −> set[U]];

( * ) [V : Type] : [set[U], set[V] −> set[[U,V]]]
(S * R)(u,v) = ( S u And R v );

End SetSig

Figure 4.4.: A rudimentary ground signature extension for power sets

of an appropriate type. These functions are assumed to fulfil the conditions for prop-
er models of ground signatures. Their names are derived from the name of the type
constructor by appending the suffixes “Pred”, “Rel”, and “Map”.

Constants and functions are introduced with the keyword CONSTANT. One can also
declare infix operators, see Subsection 4.9.5 (on page 221) for the details. The constants
can be defined in ccsl by providing a definition in higher-order logic in the syntax
formulae (see Subsection 4.5.4). If a formula is present, then it must be an equation and
the left hand side of the equation must be the constant to be defined, possibly applied
to some variables.

Figure 4.4 contains as example a rudimentary ground signature extension for the
(contravariant) powerset type constructor. In addition to the type constructor it declares
a constant for the empty set, a function for intersection, the infix operator + for union,
and the operator ∗ for the cartesian product. For demonstration purposes I defined some
of the constants.

There is also a more lightweight syntax for declaring single types and constants, see
Subsection 4.9.7 on anonymous ground signatures (on page 222 below).

4.4. Coalgebraic Class Signatures

This section introduces the structural aspects of coalgebraic specification: signatures
and signature models. The following definitions follow very closely what is implement-
ed in the ccsl compiler. The definitions are optimised for practicability — and not
for succinctness. Recall from Definition 4.2.7 that method types are types of the form
Self × τ ⇒ τ ′ and constant constructor types have the form σ ⇒ Self, where Self must
not occur in σ.
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Definition 4.4.1 (Coalgebraic Class Signature) Assume a set of type constructors
C (possibly stemming from a ground signature). A coalgebraic class signature is a pair
〈ΣM ,ΣC〉 where ΣM is a finite set of method declarations mi : τi, for method types τi,
and ΣC is a finite set of constructor declarations ci : σi for constant constructor types
σi. The set of type variables occurring in the τi and the σi are the type parameters of
the signature.

Example 4.4.2 (Queue Signature) Consider a first–in–first–out (FIFO) queue. It
supports two operations, one for enqueueing elements (put) and one for removing ele-
ments from the head (top). Removing the first element from a queue is a partial op-
eration, which fails if the queue is empty. Therefore the signature ΣQueue contains the
following method two declarations

put : Self × α // Self

top : Self // Lift[α× Self]

Additionally, there is the constructor declaration

new : Self

For any element x of Self we have either top(x) = bot (signalling an empty queue) or
top(x) = up(a, x′), where a is the first element of the queue and x′ is the successor
state of x with a removed. Instead of the simple constructor new, one could also use a
constructor new from list : list[α] → Self that takes the elements of a list to initialise the
queue.

This example of queues is the running example of this and the following section. The
example has been fully worked out in ccsl and pvs. The complete sources are available
in the world wide web, see Appendix A. �

In the following I need the term of a subsignature. Subsignatures will be used for
inheritance, for the visibility modifiers PUBLIC and PRIVATE, and for the modal operators.
The following definition might be a bit surprising on first sight, because it completely
neglects constructor declarations. I motivate this decision in the general discussion about
inheritance in Subsection 4.8.1 (on page 210) below.

Definition 4.4.3 (Subsignature) Assume a ground signature Ω and let Σ = 〈ΣM ,ΣC〉
be a coalgebraic class signature. A class signature Σ′ = 〈Σ′

M ,Σ
′
C〉 is a subsignature of Σ,

denoted by Σ′ ≤ Σ, if Σ′
M ⊆ ΣM .

Coalgebraic class signatures are classified according to the method types they contain.
If a signature contains a higher-order (respectively extended polynomial) method type,
then I refer to it as a signature with a higher-order method (with an extended polynomial
method, respectively).

To define the semantics of class signatures it is necessary to extract type information
from the signature. Assume a coalgebraic class signature Σ in the following. Let m : τ ∈
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ΣM be a method declaration, so that τ is a method type. Define the operation TM as
follows

TM(m) =

{
ρ if τ = Self ⇒ ρ
(σ1 × · · · × σn) ⇒ ρ if τ = (Self × σ1 × · · · × σn) ⇒ ρ

And if c : τ ∈ ΣC is a constructor declaration (for a constructor type τ) set

TC(c) =

{
σ if τ = σ ⇒ Self
1 if τ = Self

Let m1, . . . ,mk be the method declarations of Σ. The combined method type of Σ,
denoted by τΣ, is defined as

τΣ = TM(m1)× · · · × TM(mk)

If ΣM is empty then τΣ = 1. The combined constructor type for Σ, denoted by σΣ, is
defined by

σΣ = TC(c1) + · · ·+ TC(cl)

under the assumption, that ΣC = {c1, . . . , cl}. If ΣC is empty then σΣ = 0.
Note that σΣ is always a constant type. For τΣ we have that

τΣ is a


polynomial
extended-polynomial
higher-order

 type if Σ contains


only polynomial methods
no higher-order methods
a higher-order method.

Only practical considerations are responsible for allowing several method and con-
structor declarations in one class signature. Any class signature Σ is equivalent to a
signature Σ′ that contains exactly one method declaration of type Self ⇒ τΣ and one
constructor declaration of type σΣ ⇒ Self. So one could equivalently define the term
coalgebraic class signature as a pair 〈τ, σ〉 of an arbitrary type τ and a constant type σ.
However, in applications it is nice to have different names for different operations.

From Proposition 4.2.8 we can deduce that JτΣK is a polynomial functor if Σ contains
only polynomial method declarations and the set of type constructors C contains only
type constants. Similarly for extended polynomial functors and higher-order polynomial
functors.

However, it is much more interesting to build class signatures which use type con-
structors of arity greater than zero in their method declarations, like in the example
of queues. Let C be such a type constructor and let Σ be a coalgebraic class signature
that makes use of C. In this case the functor JτΣK depends in a nontrivial way on the
semantics JCK of the type constructor C (which comes along with a model of the ground
signature). Because there is no restriction on JCK one cannot say much about the prop-
erties of JτΣK. In a typical application of ccsl all (nonconstant) type constructors stem
from abstract data type specifications (to be dealt with in Section 4.6) and from coalge-
braic class specifications. In this case JτΣK is a data functor in the sense of (Hensel, 1999;
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Rößiger, 2000b), provided a technical condition on the variances of type parameters is
fulfilled; see Section 4.7.

For a fixed interpretation of the type parameters a model of a coalgebraic class
signature Σ is a triple consisting of the state space of the model, a coalgebra for the
functor JτΣK that interprets the method declarations, and an algebra for the functor JσΣK
that is used for the constructor declarations. A complete model is then a collection of
such triples indexed by the interpretations for the type parameters.

Definition 4.4.4 (Model of Class Signature) Let Σ be a coalgebraic class signature
with n type parameters α1, . . . , αn. A model for Σ consists of an indexed collection
of triples

(
〈X, c, a〉U1,...,Un

)
Ui∈|Set| where, for each interpretation U1, . . . , Un of the type

parameters, X is a set (the state space), c is a coalgebra, and a is an algebra as in

JσΣKU1,U1,U2,U2,...,Un,Un

a // X
c // JτΣKU1,U1,U2,U2,...,Un,Un(X,X)

Remark 4.4.5 The preceding definition does not distinguish between co– and con-
travariant occurrences of the type variables and of Self. Therefore, a proper model MΩ

of the ground signature is not strictly necessary here. It is sufficient if MΩ defines JCK
for those argument vectors whose respective co– and contravariant positions are equal.

In case MΩ is proper one can form the following category of signature models for
every interpretation U1, . . . , Un of the type parameters: Objects are triples 〈X, c, a〉 and
〈Y, d, b〉. Morphisms are JτΣK coalgebra morphism that commute with the constructors:

X
c //

f

��

JτΣK(X,X)
JτΣK(X,f)

))TTTTTTTTTTTTTTT

JσΣK

a

77oooooooooooooo

b

''OOOOOOOOOOOOOO JτΣK(X, Y )

Y
d // JτΣK(Y, Y )

JτΣK(f,Y )

55jjjjjjjjjjjjjjj

Instead of the left triangle one could require that the constructor algebras are be-
haviourally equivalent, that is, that6 ∀u ∈ JσΣK . (a u) c↔ d (b u).

Example 4.4.6 (Model for Queue) The signature ΣQueue from Example 4.4.2 has
one type parameter α. A model for this signature consists of a set XU for every set
U , a coalgebra cU : XU

//(U ⇒ XU)× Lift[U ×XU ] and an algebra aU : 1 //XU . To
describe such a model let N+ be the natural numbers including infinity ∞ and take

XU = {(n, f) | n ∈ N+ ∧ f : <n //U }

where <n = {i | i < n} is the initial segment of N+ below n.7 So a state in XU is a
pair 〈n, f〉, consisting of the number n of elements in the queue and a function f that

6By anticipating Definition 4.4.7 this condition is equivalent with Rel(JσΣ ⇒ SelfK)(c
↔

d)(a, b).
7Note that one cannot use N+ × (N ⇒ U) for XU , because then it is impossible to define new for

U = ∅.
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gives the elements in the queue for arguments less than n. I set

c(n, f) =


(
λu : U . (1, λi . u), bot

)
if n = 0(

λu : U . (n, f), up(f(0), (∞, λi . f(i+ 1)))
)

if n = ∞(
λu : U . (n+ 1, λi . if i = n then u else f(i)),
up(f(0), (n− 1, λn . f(n+ 1)))

) otherwise

new = (0, f∅)

where f∅ is the empty function ∅ //U . It is easy to see, that the coalgebra c obeys
the dependent typing of XU .8 Note that at this stage there is nothing that restricts the
behaviour of these methods: There exist models of the Queue signature that contain only
infinite queues and there are also models that do not resemble FIFO queues at all. �

There exist class signatures which do not have a model. This is because I explicitly
allow the empty set as interpretation for type parameters. An example is a class signature
Σ∅ with one method declaration m : Self ⇒ α and one constructor declaration c : 1 ⇒
Self. There is no set X with two functions 1 //X //∅ , so there is no model of Σ∅ if the
type parameter α is interpreted by the empty set. With slight changes the signature Σ∅
can be made consistent: either the method declaration is changed to m : Self ⇒ (α+ 1)
or the constructor declaration is changed to c : α⇒ Self.

There are mainly two possibilities to ensure that every signature has a model. First
one could restrict the interpretation of the type parameters to nonempty sets. This
restriction takes effect if one uses ccsl together with isabelle/hol, because there are
no empty types in isabelle. A second possibility is to require that all constructors are
parametrised by a tuple of all type parameters. This requirement could be combined
with an emptiness analysis of the method types.

In the last part of this subsection I explain how a model of a class signature Σ gives
rise to an interpretation of the method declarations of Σ and all its subsignatures.

Let M = 〈X, c, a〉 be a model of an arbitrary class signature Σ for a fixed interpre-
tation of its type parameters. For every method declaration m : τ there is a projection

πm : JτΣK(X,X) = J· · · × TM(m)× · · ·K(X,X) // JTM(m)K (X,X)

which extends to a natural transformation τm : JτΣK +3JTM(m)K . Similarly for every
constructor declaration e : τ there is an injection

κe : JTC(e)K // J· · ·+ TC(e) + · · ·K = JσΣK

extending to a natural transformation κe : JTC(e)K +3JσΣK .
Via these projections and injections the model M gives rise to an interpretation of

the method and constructor declarations. Let m : Self × σ1 × · · · × σn ⇒ ρ be a method

8The corresponding proofs have all been done in pvs. This was a quite difficult task for pvs, it revealed
six bugs, see problem reports number 483–486 on http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/.
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declaration in ΣM and e : σ ⇒ Self be a constructor declaration in ΣC . Then

JmKM = λx : X, p1 : Jσ1K, . . . , pn : JσnK . (πm(c x))(p1, . . . , pn)

JeKM = a ◦ κe

Assume now a subsignature Σ′ of Σ and let Σ′
M = {m1, . . . ,mn}. The natural transfor-

mation

〈πm1 , . . . , πmn〉 : JτΣK +3 JτΣ′K

defined by component wise pairing is called the subsignature projection and denoted by
πΣ′ (where Σ is left implicit). Lemma 3.2.5 (on page 81) shows that πΣ′ gives rise to a
functor that maps JτΣK coalgebras to JτΣ′K coalgebras. Its object part is given by post
composition; for any coalgebra c : X //JτΣK there is the following coalgebra for Σ′

πΣ′ ◦ c = 〈πm1 , . . . , πmn〉 ◦ c : X // JτΣ′K

This way a model M for Σ provides an interpretation for the method declarations of all
subsignatures of Σ.

4.4.1. Invariants and Bisimulations

Definition 3.3.3 (on page 85) defines bisimulations and invariants for higher-order poly-
nomial functors. This definition can be directly applied to the models of a class signature
Σ only under the following condition: The signature Σ contains no type parameters and
all type constructors in Σ are type constants. In this restricted case Proposition 4.2.8
applies and further, the interpretation for the type variables is not mixed up with con-
stants.

For the general case it is necessary to extend predicate and relation lifting for type
variables and nonconstant type constructors. Let me explain how this works for predicate
lifting. Let τ be a type with type variables α1, . . . , αn. Fix an interpretation U1, . . . , Un

such that Ui is used for the positive and the negative occurrences of αi in τ . For each
type variable the predicate lifting Pred(JτK) gets two additional parameter predicates
P−

i , P
+
i ⊆ Ui. These predicates are used for the negative and positive occurrences of

αi in τ , respectively.9 For the type constructors that occur in τ one simply uses the
predicate lifting that is supplied by the model of the ground signature.

Definition 4.4.7 (Predicate and Relation Lifting) Let α1, . . . , αn ` τ : Type be a
type over an arbitrary proper ground signature Ω. Fix a model M of Ω, an interpretation
U1, . . . , Un for the type variables, and an interpretation X for Self.

9One could generalise predicate lifting (and also relation lifting) to take argument predicates P−i ⊆ U−
i ,

P+
i ⊆ U+

i , where U−
i interprets the negative occurrences of αi and U+

i the positive ones. However,
predicate lifting is only used within one model where U−

i = U+
i .
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1. The predicate lifting of the interpretation of τ (with respect to M), denot-
ed by Pred(JτK), is an operation that takes 2n + 2 predicates as arguments
(two predicates for each type variable and two for Self) and yields a predicate
on JτKU1,U1,...,Un,Un(X,X). Let P = P−

1 , P
+
1 , . . . , P

−
n+1, P

+
n+1 be a tuple of pred-

icates such that P−
i , P

+
i ⊆ Ui for i ≤ n and P−

n+1, P
+
n+1 ⊆ X. Let P− =

P+
1 , P

−
1 , . . . , P

+
i , P

−
i , . . . , P

+
n+1, P

−
n+1 denote the tuple in which the predicates are

pairwise swapped (to exchange the predicates for positive and negative occur-
rences). The predicate lifting Pred(JτK) is an extension of the predicate lifting for
higher-order polynomial functors and is defined by induction on the structure of
the interpretation functor JτK.

Pred(JαiK)(P ) = P+
i

Pred(JSelfK)(P ) = P+
n+1

Pred(JPropK)(P ) = >bool = {>,⊥}
Pred(J1K)(P ) = >1 = {∗}
Pred(J0K)(P ) = >0 = ∅

Pred(Jσ + τK)(P ) = Pred(JσK)(P ) +P Pred(JτK)(P )

=
{
(κ1 x) | Pred(JσK)(P )(x)} ∪

{(κ2 y) | Pred(JτK)(P )(y)
}

Pred(Jσ × τK)(P ) = Pred(JσK)(P ) ×P Pred(JτK)(P )

=
{
(x, y) | Pred(JσK)(P )(x) ∧ Pred(JτK)(P )(y)

}
Pred(Jσ ⇒ τK)(P ) = Pred(JσK)(P−) ⇒P Pred(JτK)(P )

=
{
f | ∀x ∈ JσK . Pred(JσK)(P−)(x)

implies Pred(JτK)(P )(f x)
}

Pred(JC[σ1, . . . , σk]K)(P ) = JPredCKA1,...,An

(
Pred(Jσ1K)(P−), Pred(Jσ1K)(P ),

...

Pred(JσkK)(P−), Pred(JσkK)(P )
)

where, in the case for the constructor, Ai = JσiKU(X,X).

2. Fix now a second interpretation V1, . . . , Vn, Y for the type variables αi and for
Self and let JτKV and JτKU denote the interpretation of τ with respect to the Vi

and Ui, respectively. Let R = R−
1 , R

+
1 , . . . , R

−
n+1, R

+
n+1 be a tuple of relations such

that R−
i , R

+
i ⊆ Ui × Vi and R−

n+1, R
+
n+1 ⊆ X × Y . The relation lifting of τ (with

respect to the ground signature model M), denoted by Rel(JτK), is an operation
that maps the tuple R to a relation on JτKU(X,X)×JτKV (Y, Y ). It is defined as an
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extension of the relation lifting for higher-order polynomial functors by induction
on the structure of the interpretation of τ :

Rel(JαiK)(R) = R+
i

Rel(JSelfK)(R) = R+
n+1

Rel(JPropK)(R) = Eq(bool) = {(a, b) | a = b}
Rel(J1K)(R) = Eq(1) = {(∗, ∗)}
Rel(J0K)(R) = Eq(0) = ∅

Rel(Jσ + τK)(R) = Rel(JσK)(R) +R Rel(JτK)(R)

=
{
(κ1 x1, κ1 y1) | Rel(JσK)(R)(x1, y1)

}
∪{

(κ2 x2, κ2 y2) | Rel(JτK)(R)(x2, y2)
}

Rel(Jσ × τK)(R) = Rel(JσK)(R) ×R Rel(JτK)(R)

=
{
((x1, x2), (y1, y2)) |
Rel(JσK)(R)(x1, y1) ∧ Rel(JτK)(R)(x2, y2)

}
Rel(Jσ ⇒ τK)(R) = Rel(JσK)(R−) ⇒R Rel(JτK)(R)

=
{
(g, h) | ∀x ∈ JσKU(X,X), y ∈ JσKV (Y, Y ) .

Rel(JσK)(R−)(x, y) implies Rel(JτK)(R)(g x, h y)
}

Rel(JC[σ1, . . . , σk]K)(R) = JRelCKA,B

(
Rel(Jσ1K)(R−), Rel(Jσ1K)(R),

...

Rel(JσkK)(R−), Rel(JσkK)(R)
)

where, in the case for the constructor, A stands for the list JσiKU(X,X) and B for
JσiKV (Y, Y ).

Remark 4.4.8 The liftings of the preceding definition are sometimes referred to as full
liftings in contrast to Definition 3.3.1 that neglects type variables. The structure for type
variables is not needed for the definition of bisimulation and invariant in this subsection,
but it will be needed to give semantics to iterated specifications in Section 4.7. In the
preceding definition the cases for constants, Self, product, coproduct, and exponent
match exactly Definition 3.3.1.

In this presentation I prefer to consider predicate and relation lifting (and also bisim-
ulations and invariants) completely as semantic notions. One could equivalently define
predicate and relation lifting for types as expressions in the logic of ccsl.

The requirement of a proper ground signature in the preceding definition cannot be
dropped. If for one type constructor C from Ω its predicate lifting PredC (respectively
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its relation lifting RelC) is not available, then predicate lifting (relation lifting) for types
over Ω cannot be defined.

It is possible to adopt the results about predicate and relation lifting of Chapter 3
to the full liftings of the preceding definition. For most of the results one has to assume
that the liftings of the involved type constructors have appropriate properties. For the
commutation of the liftings with truth and equality (as in Lemma 3.3.2 on page 84) the
required properties are built-in into the notion of a proper model of a ground signature.

Lemma 4.4.9 Let M be a proper model of a proper ground signature Ω. Then pred-
icate lifting and relation lifting (with respect to M) commute with truth and equality,
respectively:

Pred(JτK)(>U1 ,>U1 , . . . ,>n,>n,>X ,>X) = >JτK

Rel(JτK)(Eq(U1),Eq(U1), . . . ,Eq(Un),Eq(Un),Eq(X),Eq(X)) = Eq(JτK)

where τ is an arbitrary type over Ω with n type variables and U1, . . . , Un, X is a (fixed)
interpretation of the type variables and of Self.

Proof By induction on the structure of τ , as in Lemma 3.3.2. �

The notions of bisimulation and invariant are defined using predicate and relation
lifting. Bisimulations in ccsl are a generalisation of Hermida/Jacobs bisimulations from
Definition 3.3.3 (on page 85). However, the invariants in ccsl are the strong invariants
from Subsection 3.4.6 (starting on page 103). For class signatures with at least one
nonpolynomial method declaration this differs from Hermida/Jacobs invariants of Defi-
nition 3.3.3.

Technically a bisimulation should relate two models, so a bisimulation should be a
family of relations indexed by the interpretation of the type parameters. This generality
is rarely needed: When working with bisimulations one is usually in a context where the
interpretation of the type parameters is fixed. Therefore I prefer to define the notions of
bisimulation and invariant only for a fixed interpretation of the type parameters.

Definition 4.4.10 (Bisimulation & Invariant) Let Σ be a coalgebraic signature
with n type parameters over a proper ground signature Ω. Assume that M = 〈X, c, a〉
and M′ = 〈Y, d, b〉 are models of Σ for a fixed interpretation Ui of the type parameters.

1. A predicate P ⊆ X is an invariant for M if for all x ∈ X

P (x) implies Pred(JτΣK)(>U1 ,>U1 ,>U2 ,>U2 , . . . ,>X , P )(c(x))

2. A predicate P ⊆ X holds initially in M if

Pred(JσΣ ⇒ XK)(>U1 ,>U1 ,>U2 ,>U2 , . . . ,>X , P )(a)
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3. A relation R ⊆ X × Y is a bisimulation for M and M′ if for all x ∈ X, y ∈ Y

R(x, y) implies

Rel(JτΣK)(Eq(U1),Eq(U1),Eq(U2),Eq(U2), . . . , R,R)(c(x), d(y))

Note that the notions of bisimulation and invariant are only defined for proper ground
signatures. The union of all bisimulations on one model M for a fixed interpretation of
the type parameters is denoted by ↔M. The fact whether the relation ↔M is again a
bisimulation depends both on the class signature Σ and on the model of the ground
signature Ω. If, for instance, the class signature contains only polynomial methods and
the ground signature is plain, then bisimilarity ↔M is a bisimulation for all proper
models of Ω. I discuss the case of a non-plain ground signature in Section 4.7.

For proper models of proper ground signatures it is possible to adopt Proposition 3.3.6
to arbitrary coalgebraic signatures.

Proposition 4.4.11 Let MΩ be a proper model of a proper ground signature Ω. Then
for any model MΣ = 〈X, c, a〉 of an arbitrary coalgebraic signature Σ the truth predicate
>X is an invariant for MΣ and the equality relation Eq(X) is a bisimulation for MΣ.

Proof Apply Lemma 4.4.9. �

4.4.2. Class Signatures in CCSL

In ccsl class signatures are part of class specifications. The main difference to Defini-
tion 4.4.1 is, that in ccsl type parameters must be declared in advance. An identifier
which is neither in the ground signature nor declared as a type parameter yields an error.
Figure 4.5 shows the signature of the queues from Example 4.4.2 in ccsl. The grammar
for class specifications is as follows:

classspec ::= BEGIN identifier [ parameterlist ] : [ FINAL ] CLASSSPEC
{| importing |} {| classsection |}
END identifier

classsection ::= inheritsection
| [ visibility ] attributesection [ ; ]
| [ visibility ] methodsection [ ; ]
| definitionsection
| classconstructorsection [ ; ]
| assertionsection
| creationsection
| theoremsection
| requestsection [ ; ]
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Begin Queue[ A : Type ] : ClassSpec
Method

put : [Self, A] −> Self;
top : Self −> Lift[[A, Self]];

Constructor
new : Self;

End Queue

Figure 4.5.: The queue signature in ccsl syntax

visibility ::= PUBLIC

| PRIVATE

Every specification in ccsl starts with the keyword BEGIN followed by the name
of the specification and the type parameters in brackets. Variance annotations for type
parameters are treated like type constraints. If they are present the compiler compares
them with the internally computed variances. The compiler reports an error if the vari-
ance annotations are too restrictive (i.e., giving a POS annotation for a type parameter
that has mixed variance). To facilitate aggregation the ccsl compiler generates an ax-
iomatic model for every class specification. The model is either the final one, or an
arbitrarily chosen loose one, depending on whether the keyword FINAL is present.

A class specification can start with importing clauses (see Subsection 4.9.4 on
page 221 below). Importing clauses in class specifications are only needed under spe-
cial circumstances.

The body of a specification consists of a number of sections. The attribute section,
the method section, and the section of class constructors constitute the class signature.
The definition section defines definitional extensions. For the inherit section see Sub-
section 4.8.1. The assertion section, the creation section, and the theorem section are
explained in Section 4.5. The assertion section and the creation section contain the ax-
ioms of the specification. The theorem section has no influence on the semantics of the
specification. It allows the user to exploit the ccsl compiler for translating formulae
(which are hopefully provable theorems) into the logic of the target theorem prover.
Finally, the request section is there to request the generation of relation liftings for
particular types, see Subsection 4.9.3.

The attribute section provides a form of syntactic sugar to ease the modelling of the
state of the objects as a record. Formally an attribute declaration is a method declaration
with the additional requirement that the type is of the form Self × σ ⇒ τ where σ and
τ are constant types. For every attribute declaration a : Self × σ ⇒ τ the compiler adds
a method declaration set a : Self × σ × τ ⇒ Self to the signature. The intention is that
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set a is the update operation that can be used to change the value of the attribute a.
Further, the ccsl compiler generates a number of assertions that describe the behaviour
of the update method, see Section 4.5.4.

The modifiers PUBLIC and PRIVATE classify the methods and attributes into two
disjoint sets. If no modifier is present then the methods or attributes are PUBLIC by
default. The intention is that private methods should not be visible from outside of the
class. However, to enforce this one would need existential types (compare (Mitchell and
Plotkin, 1988; Abadi and Cardelli, 1996)), which are not present in the theorem provers
pvs and isabelle. The ccsl compiler uses the public/private classification to derive two
signatures from every specification. The first one contains all methods and attributes,
the second one is the subsignature containing only the public attributes and methods.
All relevant definitions and lemmas are generated twice, first for the full signature, then
for public subsignature. This way the user can prove that two models are bisimilar with
respect to the public interface, thus ignoring the private methods and attributes. This
can be used, for instance, to prove special refinements (Jacobs and Tews, 2001).

The grammar for the sections of attributes, methods, constructors, and definitions is
as follows.

attributesection ::= ATTRIBUTE member {| ; member |}
methodsection ::= METHOD member {| ; member |}
member ::= identifier : type -> type

definitionsection ::= DEFINING member formula ; {| member formula ; |}
classconstructorsection ::= CONSTRUCTOR classconstructor {| ; classconstructor |}
classconstructor ::= identifier : type

| identifier : type -> type

Each of these sections contains a list of attributes, methods, constructors, or definitions.
The ccsl compiler checks that the declared attributes and methods have method types
according to Definition 4.2.7. The constructors must have constant constructor types.
The identifiers declared as attributes and methods (together with inherited attributes
and methods) form the set of method declarations ΣM and the class constructor decla-
rations form the set ΣC .

In the definition section one can define additional methods in terms of other methods
(and attributes). The defining formula must be an equation according to the syntax de-
scribed in Subsection 4.5.4. One can use the full power of ccsl’s logic with the following
exceptions: Modal operators of the current class and behavioural equality on a type that
contains Self are not allowed in definitional extensions. The reason for this restriction is
that the ccsl compiler outputs definitions at a position at which these notions are not
yet defined for the current class.

For the semantics of the class signatures the ccsl compiler deviates slightly from

160



4.4. Coalgebraic Class Signatures

QueueInterface[Self : Type , A : Type] : Theory
Begin

Importing Lift[[A , Self]]

QueueSignature : Type =
[# put : [[Self , A] −> Self],

top : [Self −> Lift[[A , Self]]]
#]

QueueConstructors : Type = [# new : Self #]
End QueueInterface

Figure 4.6.: pvs translation of the queue signature

Definition 4.4.4 in two points. First, the functors that give the semantics of types are not
present in the output. The ccsl compiler uses type expressions in the logic of pvs or
isabelle instead. The arguments of the functors become additional theory parameters
or type variables (compare the discussion on the representation of functors in pvs in
Subsection 2.4.4).

The second point is that a model of a signature consists of two labelled records of
functions (instead of a coalgebra/algebra pair)10. The first record contains for every
method declaration mi : Self × σ ⇒ ρ a function JSelf × σ ⇒ ρK(X,X) where X is an
additional type parameter that works as a place holder for the state space. Similarly the
second labelled record contains a function (or constant) for every constructor declaration.
With this different notion of model, the ccsl compiler cannot use the definitions of this
section for morphisms, bisimulation, and invariants literally. Instead it uses suitable
modifications.

As an illustration I show some parts of the pvs material that the ccsl compiler
generates for the queue signature. The material is taken from the file Queue basic.pvs,
which was obtained by running the ccsl compiler on the queue signature in Figure 4.5.
The complete sources are available in the world wide web, see Appendix A.

The first theory formalises the queue signature, it is shown in Figure 4.6. The name of
the theory is QueueInterface, it imports the data type Lift from the (translated) prelude,
and declares the method signature and the constructor signature of queue as a labelled
records. (For more explanations about the syntax of the pvs specification language see
Appendix A.1. The theories that are generated by the ccsl compiler and their contents
are described in Subsection 4.9.1 on page 217 below.)

The interface theory is used in the following way. Inhabitants of the type QueueSig-

10An earlier version of the compiler implemented Definition 4.4.4 exactly. This often lead to complica-
tions with automatic proof strategies.
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nature correspond to queue coalgebras. Assume that c has this type (i.e., c is a queue
signature model), then one can write put(c)(· · · ) in pvs to get the interpretation of the
put method with respect to c.11

After the signature the compiler outputs theories for predicate lifting and invariants.
These theories are a bit more difficult to understand, because the predicate lifting is
generated method wise. This way it can be reused for the (method wise) modal operators
of ccsl’s logic (they are handled in Subsection 4.5.2 on page 173 below). Therefore I
prefer to show the output that is generated for relation lifting and bisimulations.

Predicate and relation lifting is built into the ccsl compiler. It can generate expres-
sions corresponding directly to Rel(JτK). After some experience with the first versions of
the ccsl compiler we learned that one usually needs (c × d)∗Rel(JτK) (for two coalge-
bras c and d). Therefore the current version of the compiler mingles method invocation
with relation lifting. The result is not so pleasant from a theoretical point of view, but
much easier to use in practice. For the queue signature the pvs theory QueueBisimilarity
contains the following.

c1 : Var QueueSignature[Self1 , A]
c2 : Var QueueSignature[Self2 , A]

Queue Rel(c1 , c2) :
[[[Self1 , Self2] −> bool] −> [[Self1 , Self2] −> bool]] =
Lambda (R: [[Self1 , Self2] −> bool]) : Lambda (x1: Self1 , x2: Self2) :

(Forall (a1: A) : R(put(c1)(x1 , a1) , put(c2)(x2 , a1))) And
(Cases top(c1)(x1) OF

bot : bot?(top(c2)(x2)),
up(p0): up?(top(c2)(x2)) And

Proj 1(p0) = Proj 1(down(top(c2)(x2))) And
R(Proj 2(p0) , Proj 2(down(top(c2)(x2))))

Endcases )

The first two lines declare two queue coalgebras.12 The coalgebra c1 runs on state space
Self1 and c2 on Self2. Then Queue Rel is defined as a function on Self1 × Self2 ⇒ bool.
There are several optimisations built-in into the ccsl compiler that simplify the gener-
ated output. For the definition of bisimulation the parameter relations are instantiated
with equality. This leads to formulae of the form ∀a, b : τ . a = b ⊃ · · · , which can be
simplified into ∀a : τ . (· · · )[a/b]. With optimisations turned off the fourth line of the
definition of Queue Rel would look as follows

Forall(a1 : A, a2 : A) : a1 = a2 Implies R(put(c1)(x1, a1), put(c2)(x2, a2))

11In pvs record selection can be written like function application, so put(c) denotes the put field of the
record c.

12Variable declarations are syntactic sugar in pvs. The two declarations save the lambda abstractions
in the definition of Queue Rel for the arguments c1 and c2. See also the explanation on page 265.
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Another optimisation that is performed by the compiler is the inlining of liftings for
nonrecursive data types and class types. In the queue example the type constructor Lift
is defined as a nonrecursive abstract data type. Therefore the compiler outputs a case
expression instead of applying the relation lifting for Lift.

After the relation lifting the compiler outputs a recogniser on queue bisimulations:

bisimulation?(c1 , c2) : [[[Self1 , Self2] −> bool] −> bool] =
Lambda (R: [[Self1 , Self2] −> bool]) : Forall (x1: Self1 , x2: Self2) :

R(x1 , x2) Implies Queue Rel(c1 , c2)(R)(x1 , x2)

The predicate bisimulation? holds for a relation R if and only if R is a queue bisimulation.
With it, bisimilarity is defined as follows.

bisim?(c1 , c2) : [[Self1 , Self2] −> bool] =
Lambda (x1: Self1 , x2: Self2) : Exists (R: [[Self1 , Self2] −> bool]) :

bisimulation?(c1 , c2)(R) And R(x1 , x2)

The generation of definitions for bisimulation and invariant for coalgebraic signatures is
only one part of a translation into higher order logic. An equally well important task
is the generation of lemmas that capture standard results. For instance, for signatures
corresponding to polynomial functors the compiler generates lemmas stating that bisim-
ilarity is an equivalence relation. To achieve this, bisimulation and bisimilarity is first
defined for one coalgebra (the following material is from the theories QueueBisimilarity-
Equivalence and QueueBisimilarityEqRewrite):

c : Var QueueSignature[Self , A]
bisimulation?(c) : [[[Self , Self] −> bool] −> bool] = bisimulation?(c , c);
bisim?(c) : [[Self , Self] −> bool] = bisim?(c , c) ;

Then, the statement that equality is a queue bisimulation reads as follows:

eq bisim : Lemma bisimulation?(c)(Lambda(x1: Self , x2: Self) : x1 = x2)

For reflexivity and symmetry of bisimilarity the compiler generates

bisim refl : Lemma Forall (x: Self) : bisim?(c)(x , x)
bisim sym : Lemma Forall (x1: Self , x2: Self) :

bisim?(c)(x1 , x2) Implies bisim?(c)(x2 , x1)

In reasoning with bisimulations one often needs lemmas that express that a method
delivers the same (or bisimilar) results when invoked for bisimilar states. The ccsl
compiler generates one such lemma for each method, here I show only the one for the
method put.

bisim put : Lemma Forall (x1: Self , x2: Self , a1: A) :
bisim?(c)(x1 , x2) Implies bisim?(c)(put(c)(x1 , a1) , put(c)(x2 , a1))
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Lemmas like bisim put seem to be trivial, because they follow immediately from the defi-
nition of bisimulation. However, these little lemmas are extremely useful in applications,
their generation is one of the great benefits of the ccsl compiler.

Ideally one would like that for all generated lemmas the ccsl compiler outputs proofs
in the format of the target theorem prover. However, it is very difficult to generate proofs
that work properly for all possible signatures. The current compiler version generates
only a few proofs.

4.5. Assertions and Creation Conditions

The previous section discussed the structural aspect of coalgebraic specification. In this
section I turn to the logical aspects. The signature of FIFO queues in Example 4.4.2
contains nothing to actually restrict the class of models to those that can be considered as
FIFO queues. And, indeed, also (last–in–first–out) stacks give rise to models of ΣQueue.
In this section I define a logic that allows one to express properties of methods and
constructors from a coalgebraic class signature. A signature together with a set of logical
formulae is called a specification. The models of the specification are those models of
the signature that fulfil the formulae in a suitable sense.

In the following I present the logic of ccsl. This is an entirely standard higher-order
logic over a polymorphic signature with two extensions. The extensions are behavioural
equality and (infinitary) method-wise modal operators. The first subsection presents
the higher-order logic with behavioural equality over a coalgebraic class signature. The
second subsection defines infinitary modal operators for coalgebras. Subsection 4.5.3 is
on coalgebraic class specifications and Subsection 4.5.4 explains the syntax of ccsl.

4.5.1. Higher-order Logic

The striking property of higher-order logic is that formulae are terms of the special
type Prop. Thereby it is possible to quantify over subsets of individuals and also over
predicates. Terms may contain (term) variables , which are declared to have a certain
type in the term variable context. All types can contain type variables drawn from a
type variable context. Formally a term variable context (over a type variable context Ξ)
is a finite list of distinct variable declarations x : τ such that Ξ ` τ : Type is derivable.13

Terms are formed from variables, constructions like tuples or case analysis, and logical
connectives. A term is given by a term judgement

Ξ | Γ ` t : τ

Here Ξ is a type variable context, Γ is a term variable context and t is a well-typed term
of type τ according to the rules below. All free (term) variables of t must be declared in
Γ and all type variables that occur in t, τ , and Γ must be declared in Ξ.
13The condition that a context contains no variable twice can be enforced at the expense of a more

complicated derivation system, see for instance Section 2.1 in (Jacobs, 1999a).
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The following definition describes the terms and formulae over a coalgebraic class
signature. Modal operators are added in Definition 4.5.7 (on page 174) below.

Definition 4.5.1 (Terms and Formulae) Let Σ be a coalgebraic class signature over
a proper ground signature Ω. The set of terms over Σ, denoted with Terms(Σ), is the
least set containing:

• x : τ for a variable x of type τ

• ∗ : 1 the only inhabitant of 1

• ⊥ : Prop, > : Prop the boolean constants false and true

• f : σ for constants f ∈ Ωσ

• m : Self × σ ⇒ ρ for all method declarations m ∈ ΣM

• c : σ ⇒ Self for all constructor declarations c ∈ ΣC

• (t1, t2) : σ × τ , the tuple for terms t1 : σ and t2 : τ

• π1 t : σ and π2 t : τ , the projections for a term t : σ × τ

• κ1 s : σ + τ and κ2 t : σ + τ , the injections for terms s : σ and t : τ

• cases t of κ1 x : r, κ2 y : s : τ , the case analyses for terms t : σ1 + σ2, r : τ , and
s : τ . The term r contains the variable x free and the term s contains y free. The
term t gets bound to either x or y, depending on the result of the evaluation. In
the complete case expression the variables x and y are bound.

• if r then s else t : τ , the conditional for a term r : Prop and two terms s and t of
the same type τ

• λx : σ . t : σ ⇒ τ , lambda abstraction for a variable x : σ and a term t : τ .

• t1 t2 : τ , application for two terms t1 : σ ⇒ τ and t2 : σ

• t1 = t2 : Prop equality for two terms of the same type τ

• t1 ∼ t2 : Prop, behavioural equality for two terms of the same type τ

• ¬t : Prop, the negation for a term t : Prop,

• t1 ∧ t2 : Prop and t1 ∨ t2 : Prop, the conjunction and the disjunction for terms
t1 : Prop and t2 : Prop

• ∀x : τ . t : Prop, universal quantification for a variable x : τ and a term t : Prop
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A derivation system for term judgements for well-typed terms is in the Figures 4.7
and 4.8. As abbreviations I define

• t1 ⊃ t2
def
= ¬t1 ∨ t2, implication

• t1 ⊃⊂ t2
def
= (t1 ⊃ t2) ∧ (t2 ⊃ t1), logical equivalence

• let x : τ = t1 in t2
def
= (λx : τ . t2) t1, let bindings

• ∃x : τ . t
def
= ¬∀x : τ .¬t, existential quantification

Terms of type Prop are called formulae and denoted with Greek letters like ϕ, ψ. The
formulae over Σ are denoted with Form(Σ).

The only non-standard term in the preceding definition is behavioural equality. Its
semantics is given by the relation lifting of bisimilarity. For instance for two terms t1
and t2 of type α × Self the equation t1 ∼ t2 holds if and only if π1 t1 = π1 t2 and
(π2 t1) ↔ (π2 t2). For class signatures over non-proper ground signatures one has to
restrict the terms to those which do not contain behavioural equality ∼.

Example 4.5.2 In Example 4.4.2 I described the Queue signature. Here I show two
formulae that separate FIFO queues from other models of the Queue–signature. The
first property is about empty queues. A queue q is considered empty if the top methods
fails on it (i.e., if top(q) = bot).

Fempty(q)
def
=

[
top(q) = bot ⊃ ∀a : α . top(put(q, a)) ∼ up(a, q)

]
So if the queue is empty then top(put(q, a)) should always be successful (i.e., it never
equals bot) and return a pair (b, q′) where a = b and q′ is an empty queue again. To be
precise Fempty is a term

α : Type | q : Self ` Fempty(q) : Prop

The second property (over the same contexts) is about nonempty queues.

Ffilled(q)
def
=

[
∀a1 : α, q′ : Self . top(q) ∼ up(a1, q

′) ⊃
∀a2 : α . top(put(q, a2)) ∼ up(a1, put(q′, a2))

]

This says that, if q is nonempty, then the two operations of adding an element (at the
end) and of removing the first element are interchangeable. �

The semantics of the logic is completely standard. Let Ξ | Γ ` t : τ be a term. Fix an
interpretation U1, . . . , Un for the type variables in Ξ and a set X as interpretation of Self.
You can think of the term t as a function that maps any values that you assign to the
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ground terms

Ξ ` σ : Type

Ξ | Γ ` x : σ
x : σ ∈ Γ

Ξ ` σ : Type

Ξ | Γ ` f : σ
f ∈ Ωσ

Ξ ` τ : Type

Ξ | Γ ` m : τ
m : τ ∈ ΣM

Ξ ` τ : Type

Ξ | Γ ` c : τ
c : τ ∈ ΣC

Ξ | Γ ` ∗ : 1 Ξ | Γ ` ⊥ : Prop Ξ | Γ ` > : Prop

tuples

Ξ | Γ ` s : σ Ξ | Γ ` t : τ

Ξ | Γ ` (s, t) : σ × τ

Ξ | Γ ` t : σ × τ

Ξ | Γ ` π1 t : σ

Ξ | Γ ` t : σ × τ

Ξ | Γ ` π2 t : τ

variants

Ξ | Γ ` s : σ Ξ ` τ : Type

Ξ | Γ ` κ1 s : σ + τ

Ξ ` σ : Type Ξ | Γ ` t : τ

Ξ | Γ ` κ2 t : σ + τ

Ξ | Γ ` t : σ1 + σ2 Ξ | Γ, x : σ1 ` r : τ Ξ | Γ, y : σ2 ` s : τ

Ξ | Γ ` cases t of κ1 x : r, κ2 y : s : τ
x /∈ Γ, y /∈ Γ

conditional
Ξ | Γ ` r : Prop Ξ | Γ ` s : τ Ξ | Γ ` t : τ

Ξ | Γ ` if r then s else t : τ

abstraction & application

Ξ ` σ : Type Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` λx : σ . t : σ ⇒ τ
x /∈ Γ

Ξ | Γ ` t : σ ⇒ τ Ξ | Γ ` s : σ

Ξ | Γ ` t s : τ

Figure 4.7.: Derivation system for the terms over a coalgebraic class signature Σ and a
ground signature Ω, Part I
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equality

Ξ | Γ ` s : τ Ξ | Γ ` t : τ

Ξ | Γ ` s = t : Prop

Ξ | Γ ` s : τ Ξ | Γ ` t : τ

Ξ | Γ ` s ∼ t : Prop

conjunction & disjunction

Ξ | Γ ` s : Prop Ξ | Γ ` t : Prop

Ξ | Γ ` s ∧ t : Prop

Ξ | Γ ` s : Prop Ξ | Γ ` t : Prop

Ξ | Γ ` s ∨ t : Prop

negation

Ξ | Γ ` t : Prop

Ξ | Γ ` ¬t : Prop

universal quantification

Ξ ` τ : Type Ξ | Γ, x : τ ` t : Prop

Ξ | Γ ` ∀x : τ . t : Prop
x /∈ Γ

The following rules can be derived.

weakening

Ξ | Γ ` t : τ

Ξ, α : Type | Γ ` t : τ
α /∈ Ξ

Ξ ` σ : Type Ξ | Γ ` t : τ

Ξ | Γ, x : σ ` t : τ
x /∈ Γ

type substitution

Ξ ` σ : Type Ξ, α : Type | Γ ` t : τ

Ξ | Γ[σ/α] ` t[σ/α] : τ [σ/α]
α /∈ Ξ

term substitution

Ξ | Γ ` s : σ Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` t[s/x] : τ
x /∈ Γ

Figure 4.8.: Derivation system for the terms over a coalgebraic class signature Σ and a
ground signature Ω, Part II
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variables in Γ to a value in τ . Consequently the semantics of t for a fixed interpretation
of the type variables and of Self is a function

Jσ1K× · · · × JσkK // JτK

where I assume that Γ = x1 : σ1, . . . , xk : σk. The complete semantics for t is an indexed
collection of such functions:(

Jσ1KU1,U1,...,Un,Un(X,X)× · · · × JσkKU1,U1,...,Un,Un(X,X)

// JτKU1,U1,...,Un,Un(X,X)

)
X,U1, . . . , Un ∈ |Set|

If t : τ is a formula then JτK is the set of booleans and the interpretation function returns
true for exactly those elements of JσiK that fulfil t. So one can equivalently consider the
semantics of a formula x : σ ` ϕ : Prop as a (collection of) predicate(s) JϕK ⊆ JσK.

Definition 4.5.3 (Semantics) Let Σ be a coalgebraic class signature over a proper
ground signature Ω and assume a model MΩ of Ω and a model MΣ = 〈X, c, a〉 of Σ.
The interpretation of a term α1, . . . , αn | x1 : σ1, . . . , xk : σk ` t : τ with respect to MΩ

and MΣ is denoted by JtKMΩ,MΣ , where I omit the superscripts if they are clear from
the context. The interpretation JtK is defined by induction on the structure of terms.
Fix an interpretation U1, . . . , Un of the type variables αi and and an interpretation X of
Self. Let x : σ denote the tuple of arguments x1 : Jσ1K, . . . , xk : JσkK.

JxiK = πi

JfK = JfK for f ∈ Ωσ

Jm : Self × σ′ ⇒ τ ′K = λx : σ .
(
λx : X, p : Jσ′K . πm(c x)(p)

)
JcK = λx : σ . a ◦ κc

J∗K = λx : σ . ∗
J⊥K = λx : σ .⊥
J>K = λx : σ .>

J(t1, t2)K = 〈Jt1K, Jt2K〉
Jπ1 tK = π1 ◦ JtK
Jπ2 tK = π2 ◦ JtK
Jκ1 sK = κ1 ◦ JtK
Jκ2 tK = κ2 ◦ JtK

Jcases t of κ1 x : r, κ2 y : sK = λx : σ .

{
JrK(x, z1) if JtKx = κ1z1

JsK(x, z2) if JtKx = κ2z2

Jif r then s else tK = λx : σ .

{
JsKx if JrKx = >
JtKx if JrKx = ⊥

Jλx : ρ . tK = λx : σ .
(
λy : JρK . JtK(x, y)

)
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Jt1 t2K = λx : σ . Jt1K(x) (Jt2Kx)
Jt1 = t2K = λx : σ . Jt1Kx = Jt2Kx
Jt1 ∼ t2K = λx : σ .Rel(JρK)(↔MΣ

)(Jt1Kx, Jt2Kx)
(for t1 and t2 of type ρ)

J¬tK = λx : σ .¬JtKx
Jt1 ∧ t2K = λx : σ . Jt1Kx ∧ Jt2Kx
Jt1 ∨ t2K = λx : σ . Jt1Kx ∨ Jt2Kx

J∀x : τ . tK = λx : σ .

{
> if JtK(x, y) = > for all y ∈ JτK
⊥ otherwise

In the following I elaborate on the expressiveness of the logic of ccsl.

Proposition 4.5.4 The logic of ccsl is complete with respect to bisimilarity. More
precisely, for every closed term t ∈ Term(Σ) of type Self over a signature Σ, there exists
a formula x : Self ` F (x) : Prop with the following property. For an arbitrary model
M = 〈X, c, a〉 of Σ and a state x ∈ X one has JF K(x) = > if and only if there is a
bisimulation on M relating x and JtKM.

Proof (Sketch) The definition of relation lifting and bisimulation can be directly ex-
pressed in the logic of ccsl. Thus there is a formula R : Self × Self ⇒ Prop ` bisim(R) :
Prop which is true, precisely if R is interpreted with a bisimulation. One can take as F

λx : Self . ∃R : Self × Self ⇒ Prop . bisim(R) ∧ R(t, x) �

The logic of ccsl has equality on all types, including Self. Therefore it is easy to
construct a formula that evaluates to different values for bisimilar states. For coalge-
braic specification it is often desirable to restrict the expressiveness of the logic, such
that it cannot distinguish bisimilar states, or, in other words, is sound with respect to
bisimilarity. This restricted expressiveness is for instance necessary for some results in
Section 4.7 and for the result about behavioural refinement in (Jacobs and Tews, 2001).
In the following I characterise a fragment of the logic of ccsl that is sound with respect
to bisimilarity. The higher-order aspects make it necessary to consider terms in general.

Definition 4.5.5 (Behavioural invariance) Let M be a model of a proper ground
signature Ω and let Σ be a coalgebraic class signature over Ω. Let Ξ | Γ ` t : τ be
a term over Σ with Γ = a1 : σ1, . . . , ak : σk. The term t is invariant with respect to
behavioural equality for M (or more succinctly behaviourally invariant for M) if for all
models A =

(
〈X, c, a〉U

)
and B =

(
〈Y, d, b〉U

)
and all interpretations U = U1, . . . , Un

of the type parameters of Σ the following condition is fulfilled. Let xi ∈ JσiKU(X,X)
and yi ∈ JσiKU(Y, Y ) be two interpretations of the variables ai and let R ⊆ X × Y be a
bisimulation for c and d. If

Rel
(
JσiK

) (
Eq(U1), . . . ,Eq(Un), R,R

)
(xi, yi)
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holds for all i, then it also holds that

Rel
(
JτK
) (

Eq(U1), . . . ,Eq(Un), R,R
) (

JtKM,A(x1, . . . , xk), JtKM,B(y1, . . . , yk)
)

This definition is carefully formulated to apply to arbitrary signatures, for which a
greatest bisimulation might not exist. Of course, if bisimilarity as greatest bisimulation
does exists, then behavioural invariance with respect to bisimilarity implies behavioural
invariance with respect to any other bisimulation. It is easy to give some sufficient
syntactical criteria for behavioural invariance of terms.

Proposition 4.5.6 Let Σ be a coalgebraic class signature. The following basic terms are
behaviourally invariant:

• variables x : τ

• the constants ⊥,> : Prop, and ∗ : 1

• methods from Σ

The following constructions preserve behavioural invariance:

• pairing (t1, t2): that is if t1 and t2 are behavioural invariant then so is (t1, t2),

• projections π1/2 t : σ, injections κ1/2 t, and case analyses
cases t of κ1 x : t1, κ2 y : t2 : τ

• the conditional if t1 then t2 else t3,

• lambda abstraction λx : σ . t and application t1 t2

• negation ¬t, conjunction t1 ∧ t2, and disjunction t1 ∨ t2

For proper models of the ground signature:

• universal quantification over constants ∀x : τ . t, where τ is a constant type (i.e.,
VSelf(τ) = ?)

If additionally bisimulations are closed under composition and if the greatest bisimulation
↔ does exist:

• behavioural equality t1 ∼ t2

Proof I abbreviate the longish Rel(JτK)(Eq(U1), . . . ,Eq(Un), R,R) as Rel(τ)( · · · ) and
use x = x1, . . . , xk and y = y1, . . . , yk.

• Rel(τ)( · · · )(JxKA, JxKB) follows from the definition.
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• The basic terms ∗, ⊥, and > are behavioural invariant because Definition 4.4.7 (2),
uses equality for Prop and 1.

• Let t = m be a method, then Rel(τ)( · · · )(JmKA, JmKB) follows from the definition
of bisimulation.

• If t is a pair, a projection, an injection, or a case analyses, then the conclusion
follows directly from the definition of relation lifting.

• For the conditional t = if t1 then t2 else t3 assume that t1, t2, and t3 are behavioural
invariant. Then Jt1KA x = Jt1KB y and the conclusion follows by the induction hy-
pothesis on t2 and t3.

• For t = λx : σ . t1 we have to show that for all x ∈ JσKA and y ∈ JσKB with
Rel(σ)( · · · )(x, y) also Rel(τ)( · · · )(Jt1KA(x, x), Jt1KB(y, y)). This fact follows direct-
ly from the behavioural invariance of t1.

The case t = t1 t2 follows directly from the behavioural invariance of t1 and t2.

• If t is one of the propositional connectives, then the conclusion follows again from
the fact that the relation lifting for type Prop is given by equality.

• If t = ∀a : σ . t′ then we have JσKA = JσKB because σ is a constant type. Addition-
ally Lemma 4.4.9 yields Rel(σ)( · · · ) = Eq(JσK) for a proper model of the ground
signature. So the assumption about the behavioural invariance of t1 implies for
every a ∈ JσK that JtKA(x, a) = JtKB(y, a).

• For t = t1 ∼ t2 assume that t1 and t2 are behavioural invariant. With composition
of bisimulations Rel(τ)(· · · )(Jt1KA, Jt2KA) holds precisely if Rel(τ)(· · · )(Jt1KB, Jt2KB)
holds. Hence JtKA = JtKB. �

The notion of behavioural invariance and the preceding proposition are interesting
for class signatures for which coalgebra morphisms are functional bisimulations. In this
case behavioural invariance implies stability under coalgebra morphisms. I exploit this
fact in Proposition 4.5.18 and in Subsection 4.7.2.

Note that the preceding proposition does neither include constants from the ground
signature nor constructors from class specifications. Monomorphic constants (i.e., those
over the empty type variable context) are behaviourally invariant if the relation lifting for
their type coincides with equality (which holds for proper models of proper ground signa-
tures). Polymorphic constants might or might not be behaviourally invariant, depending
on the model of the ground signature. With the -pedantic switch (see Subsection 4.9.9
on page 223 below) the ccsl compiler recognises polymorphic constants as behavioural
invariant if they are instantiated with a constant type. This relaxed policy rests on an
argument similar to that in the preceding proof for the item of universal quantification
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and on the fact that the -pedantic switch implies a proper ground signature with a
proper model.

4.5.2. Infinitary Modal Operators

This subsection describes joint work with Bart Jacobs and Jan Rothe. Following the ob-
servations that, firstly, modal logic (Goldblatt, 1992) is the logic for describing dynamic
systems and that, secondly, coalgebras are the mathematical structures that capture dy-
namic systems one has to expect a close relationship between modal logic and coalgebras.
Currently modal logic is used in the field of coalgebras mainly in two different ways. On
the one hand modal logic is used as a tool to investigate the theory of coalgebras. On
the other hand modal logic enriches coalgebraic specification.

In the former line of work (Moss, 1999) describes characterising (modal) formulae for
the state space of a coalgebra. Rößiger uses modal logic to construct final coalgebras for
data functors (Rößiger, 2000a) (but see also (Rößiger, 2000b)). Modal logic also plays
an important role in the search for the coalgebraic analogy of Birkhoffs theorem (Kurz,
2000; Hughes, 2001; Goldblatt, 2001a). The modal logics of Rößiger, Moss, and Gold-
blatt are all sound and complete with respect to bisimilarity (i.e., bisimilar states fulfil
the same set of formulae and for any two non-bisimilar states there is a formula that
distinguishes both). The logics of Kurz and Hughes have this property when restricted to
one colour. However, all these logics have often been designed towards a certain theorem.
Without deprecating all this work, one notices that these logics are not very practical for
expressing interesting properties of coalgebras. For instance in the queue example of this
chapter, I consider the following property Ffinite as interesting: A queue fulfils Ffinite if
the successive application of the method top eventually yields an empty queue (i.e., top
returns eventually bot). To express Ffinite in the framework of (Moss, 1999) or (Rößiger,
2000a) one needs infinitary conjunctions or an infinite set of formulae.

The second line of research that connects modal logic and coalgebra tries to enrich
coalgebraic specification with modalities to express certain properties more succinctly.
(Jacobs, 1997b) shows that the infinitary14 modality always can get its semantics via
greatest invariants (contained in some predicate). (Rothe, 2000) picks this idea up and
describes method wise infinitary modal operators for ccsl (see also Section 4 in (Rothe
et al., 2001)). This section describes Rothes method wise modal operators in the formal
context of coalgebraic class signatures over a polymorphic type theory.

In the following I consider infinitary versions of the two modal operators � and ♦. For
a (syntactic) predicate P the modality �P (always P or henceforth P ) holds for a state
x of a coalgebra c, if P holds for x and all successor states of x, which can be reached via
c. So �P is the safety property that assures that the bad event ¬P never happens. The

14Infinitary means here, that the modal operator applies to all following successor states and not only
to the next state. Thus is satisfies the schema 4 (Goldblatt, 1992) and, equivalently, the underlying
Kripke structure is transitive.
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modality ♦ (eventually) is the dual of �, that is ♦P = ¬�¬P . The formula ♦P holds
for those states x that have at least one successor state that makes P true. Therefore
one can view ♦P as the liveness property that holds if the good thing P does eventually
happen.15

The semantics of the modalities is given by the greatest invariant (contained in some
predicate), compare Section 2.6.6 and Section 3.4.6. Because ccsl uses strong invariants
the greatest invariant exists for all class signatures over a proper plain ground signature
(Proposition 3.4.25). For non-plain ground signatures I assume that the predicate lifting
of all type constructors C is monotone in its positive positions:

Pi ⊆ Qi, implies PredC(>, P1, . . . ,>, Pn) ⊆ PredC(>, Q1, . . . ,>, Qn) (4.1)

The interaction of the modalities with the higher-order logic of Definition 4.5.1 is a
bit tricky, so let me discuss the type of � before I present the definition (the following
explanation applies to ♦ in the same way). From the preceding paragraph it is clear
that the expression, to which � is applied to, must be a predicate on the state space of
the coalgebra. Therefore it must be of type Self ⇒ bool. Assume that P is of type Prop
and has a free variable x : Self, then we can form the expression �(λx : Self . P ). This
expression is again a predicate on the state space, so we have �(λx : Self . P ) : Self ⇒
Prop.

Note that, different to traditional modal logic, the predicate P can contain additional
free variables. In this case both �(λx : Self .∀a : τ . P ) and ∀a : τ .�(λx : Self . P ) are
possible.

When working with class signatures, one often wants to express that only the subset
{m1, . . . ,mn} of all available methods retains a safety property P . Thereby one explic-
itly allows that a method m0 /∈ {m1, . . . ,mn} yields a successor state that violates P .
This cannot be expressed with the � operator described so far. Similarly, for liveness
properties one might want to ensure that a state fulfilling P can be reached by only
using a subset of all available methods. One example for this is the property Ffinite from
before, where the empty queue is reached by only applying the method top.

The solution of this problem is to annotate the modal operators with sets of method
identifiers, like in �{m1,m2}(λx : Self . P ). The annotation restricts the number of suc-
cessor states that are considered: The formula �M(λx : Self . P ) holds for y if P holds
for all successor states that can be reached with methods in M . The value of P on a
successor state that was obtained via a method m /∈M does not play any role. Similarly
for ♦.

Definition 4.5.7 (Modal Operators) Let Σ = 〈ΣM ,ΣC〉 be a coalgebraic class sig-
nature over a proper ground signature. The set of terms over Σ contains in addition to
Definition 4.5.1
15Note that in general ♦P is not a liveness property according to the rigorous definition of (Alpern and

Schneider, 1985): ♦P is not dense in the obvious topology. However �P is closed and therefore a
safety property in the sense of Alpern and Schneider.
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always

Ξ | Γ ` P : Self ⇒ Prop

Ξ | Γ ` �MP : Self ⇒ Prop
M ⊆ ΣM

eventually

Ξ | Γ ` P : Self ⇒ Prop

Ξ | Γ ` ♦MP : Self ⇒ Prop
M ⊆ ΣM

Figure 4.9.: Derivation rules for the modal operators over a class signature Σ =
〈ΣM ,ΣC〉.

• �MP : Self ⇒ Prop for a set of method (identifiers) M ⊆ ΣM and a predicate
P : Self ⇒ Prop.

The derivation rule is in Figure 4.9. There are the following abbreviations

• ♦MP
def
= λy : Self . ¬ �M(λx : Self .¬P x)(y)

• �P
def
= �ΣMP

• ♦P
def
= ♦ΣMP

Remark 4.5.8 There are several alternatives to introduce modal operators into the
higher-order logic of ccsl. The preceding definition seems to be the most appropriate
compromise for getting the succinctness of modal logics without cluttering ccsl too
much. The following alternatives have been discarded.

• Rößiger and Jacobs define in (Rößiger, 2000a) and (Jacobs, 2000) the notion of
paths by induction on the structure of the signature functor. One path denotes
precisely one possible way to extract a successor state. Path-wise modal opera-
tors allow one to distinguish between several successor states that are obtained
from one method application. As an example consider a method (or a coalgebra)
m : Self ⇒ (Self × Self) + Self. For this method there are three paths κ1·π1, κ1·π2,
and κ2. If mx = κ1(y1, y2) then the path κ1 · π2 denotes y2 and in this case the
path κ2 does not denote a successor state.

Path wise modal operators are finer than method wise ones. However, for ccsl
the granularity of methods seems appropriate.

• A modal µ–calculus (Stirling, 1992) for coalgebras would be even more flexible
than path wise modal operators. This remains future work, a first discussion is
in (Jacobs, 2002).

• The preceding definition introduces �(λx : Self . P ) as a special term. Alternatively
one can assume a (higher-order) function �M : (Self ⇒ Prop) ⇒ (Self ⇒ Prop).
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• The operator � acts as a variable binder. In Definition 4.5.7 this is captured by
requiring that P is of type Self ⇒ bool (the binding is done by lambda abstraction).
In a first-order version the bound variable must be explicit, as in the following
(where I neglect the annotation with methods):

Γ, x : Self ` P : Prop

Γ, y : Self ` (�xP ) y : Prop

Here y is a fresh variable and the x in P is bound by �x. The substitution rule is
as follows:

((�x P ) t) [s/z] =

{
(�x P ) (t[s/z]) for x = z
(�x P [s/z]) (t[s/z]) for x 6= z

Definition 4.5.9 (Semantics of �) Let Σ = 〈ΣM ,ΣC〉 be a coalgebraic class sig-
nature over a proper ground signature Ω and let A = 〈X, c, a〉 and MΩ be models
for Σ and Ω, respectively. Assume that MΩ satisfies the monotonicity requirement of
Equation 4.1. Consider the term Ξ | Γ ` �MP with contexts Ξ = α1, . . . , αn and
Γ = x1 : σ1, . . . , xk : σk. By definition the set of method annotations M forms a subsig-
nature Σ′ = 〈M, ∅〉 ≤ Σ. Now, fix an interpretation U1, . . . , Un of the type variables and
an interpretation X of Self. Let x : σ denote the tuple x1 : Jσ1KU1,...,Un(X,X), . . . , xk :
JσkKU1,...,Un(X,X) for the interpretation of the term variables x1, . . . , xk. Then

J�MP KA = λx : σ .
(
JP KA (x)

)
πM ◦ c

where (−)
πM◦c

denotes the greatest invariant with respect to the induced coalgebra

πΣ′ ◦ c : X // JτΣ′K(X,X)

Example 4.5.10 A queue contains a finite number of elements if the top method even-
tually returns bot. This property can now be formalised as

Ffinite(q)
def
= (♦top λx : Self . top(x) = bot) (q)

as negation we obtain

Finfinite(q)
def
= (�top λx : Self . ¬ top(x) = bot) (q)

For another example recall the formulae Fempty and Ffilled from Example 4.5.2 that capture
the behaviour of FIFO queues. Define a formula that describes finite FIFO queues as

FFFIFO(x)
def
= Fempty(x) ∧ Ffilled(x) ∧ Ffinite(x)
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Let q be an arbitrary finite FIFO queue. Starting from any other finite FIFO queue p
one can construct a queue p′ such that p′ and q are bisimilar. This is expressed with

FFFIFO(p) ∧ FFFIFO(q) ⊃ (♦ λp′ : Self . p′ ∼ q)(p) (4.2)

with method wise modal operators it can be slightly strengthened to

FFFIFO(p) ∧ FFFIFO(q) ⊃ (♦top ♦put λp′ : Self . p′ ∼ q)(p) (4.3)

which expresses that the successor state p′ that is equivalent to q can be reached by first
emptying p and then filling it. The preceding two statements can be put as theorems
into the queue specification, see Figure 4.11 (on page 184 below). Although the proof
of 4.2 and 4.3 is intuitively very simple it requires a fair amount of work to prove the
two statements in pvs. The proof distributed with the sources of the queue example
(see Appendix A) requires 54 utility lemmas that have been proved with about 700 pvs
proof commands. �

In the remainder I show a few general results about the modal operators. I first
investigate behavioural invariance, extending Proposition 4.5.6.

Proposition 4.5.11 Let Σ be a coalgebraic class signature over a plain ground signature
that contains only polynomial methods. If the term Ξ | Γ ` P is invariant with respect
to behavioural equality, then so is Ξ | Γ ` �MP .

The preceding proposition does not hold if Σ contains a binary method. It is easy
to construct an example that shows this. The problem here is that ccsl uses strong
invariants and that Proposition 3.4.11 (on page 99) fails for strong invariants.

Proof Under the assumptions of the proposition Σ corresponds to a polynomial functor.
Consider two models A = 〈X, c, a〉 and B = 〈Y, d, b〉 of Σ and let R be a bisimulation for
c and d that relates x ∈ X and y ∈ Y . Assume x ∈ J�MP KA, it remains to show that also
y ∈ J�MP KB. Note that R is also a bisimulation for πM ◦ c and πM ◦ d. Consider now
the predicate Q =

∐
π2

(R ∧ π∗1 J�MP KA) = {y | ∃x . xR y ∧ x ∈ J�MP KA}. By Propo-
sition 2.6.17 and 2.6.15 Q is an invariant for πM ◦ d. And because P is behaviourally
invariant, we have Q ⊆ JP KB. �

Proposition 4.5.12 ((Rothe, 2000)) The method wise modal operators �M fulfil the
S4 rules. For arbitrary predicates Ξ | Γ ` P : Self ⇒ bool and Ξ | Γ ` Q : Self ⇒ bool
with x /∈ Γ we have

K : ∀x : Self .
(
�M λx : Self . (P x ⊃ Qx)

)
(x) ⊃ (�M P )(x) ⊃ (�M Q)(x)

T : ∀x : Self . (�MP )(x) ⊃ P (x)

4 : ∀x : Self . (�MP )(x) ⊃ (�M �MP )(x)
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As usual in modal logic one can get theorems for ♦M by dualization, for instance,
the dualized version of T is

∀x : Self . P (x) ⊃ (♦M P )(x)

Proof The proof follows from basic properties of greatest invariants, for instance
J�M P K is an invariant, therefore J�M �M P K = J�M P K, which implies 4. �

Proposition 4.5.13 Let Ξ | Γ, y : τ ` P : Self ⇒ bool be a predicate, which possibly
contains y freely. Then for all x : Self it holds that

1. ∀y : τ . (�M P )(x) ⊃⊂
(
�M λx′ : Self .∀y : τ . P (x′)

)
(x)

2. ∃y : τ . (�M P )(x) ⊃
(
�M λx′ : Self .∃y : τ . P (x′)

)
(x)

Proof For 1 it suffices to prove that Q(x)
def
= ∀y : τ . (�M P )(x) is the greatest

invariant implying ∀y : τ . P (x). Clearly, the predicate Q is an invariant that implies
∀y : τ . P (x). Now assume an invariant Q′ such that Q′(x) implies ∀y : τ . P (x). Then
Q′(x) implies also P (x) for an arbitrary but fixed y. By definition �M P (x) is the
greatest invariant implying P (x) for any fixed y, therefore Q′(x) implies also �M P (x)
for any fixed y. Because the y was chosen arbitrarily, Q′(x) implies ∀y : τ .�M P (x), so
Q is indeed the greatest invariant.

For 2 it suffices to show that ∃y : τ . (�M P ) is an invariant that implies ∃y : τ . P .
Both is obvious. �

4.5.3. Coalgebraic Class Specifications

A specification is a signature whose class of models is restricted with a set of axioms.

Definition 4.5.14 (Coalgebraic Class Specification) Let Σ be a coalgebraic class
signature with type parameters Ξ = α1, . . . , αn.

1. A formula ϕ is a Σ method assertion, if Ξ | x : Self ` ϕ and if ϕ contains no
constructor from ΣC .

2. A formula ψ is a Σ constructor assertion if Ξ | ∅ ` ψ.

3. A coalgebraic class specification is a triple 〈Σ,AM ,AC〉 where Σ is a coalgebraic
class signature, AM is a finite set of Σ method assertions, and AC is a finite set of
Σ constructor assertions.

Example 4.5.15 In a class specification for queues it makes sense to demand that the
queue constructor new returns an empty queue. Therefore I set

Queue = 〈ΣQueue, {Fempty, Ffilled}, {Fnew}〉

178



4.5. Assertions and Creation Conditions

where
Fnew =

[
top(new) = bot

]
specifies that new delivers the empty queue. �

The notion of a subspecification is needed below. The restriction to method asser-
tions is implied by the restriction to method declarations in subsignatures and will be
explained in Subsection 4.8.1 (on page 210) below.

Definition 4.5.16 (Subspecification) A class specification S ′ = 〈Σ′,A′
M ,A′

C〉 is a
subspecification of S = 〈Σ,AM ,AC〉, denoted as S ′ ≤ S if Σ′ ≤ Σ and A′

M ⊆ AM .

Definition 4.5.17 (Semantics of Class Specifications) Let 〈Σ,AM ,AC〉 be a coal-
gebraic class specification. A model of this class specification is a model M of Σ such
that for all interpretations Ui of the type variables the following holds.

• For all x ∈ X all method assertions hold: JϕKM x = > for all ϕ ∈ AM .

• All constructor assertions are fulfilled: JψKM = > for ψ ∈ AC .

Example 4.4.6 has been carefully constructed, it actually is a model of the Queue–
specification from Example 4.5.15. A class specification is consistent if it has at least
one model with a nonempty state space. Note that for a consistent class specification
the models form always a proper class.

Assume a subspecification S ′ of S (involving Σ′ ≤ Σ) and a model M = 〈X, c, a〉 of
S. The coalgebra c fulfils all assertions of S, so it obviously fulfils the assertions of S ′.
Therefore also πΣ′ ◦ c fulfils all assertions of S ′.

The following standard result describes under which condition one can obtain a final
coalgebra satisfying the method assertions of a specification. A first version of it appeared
in (Jacobs, 1996b).

Proposition 4.5.18 Let S = 〈Σ,AM ,AC〉 be a consistent coalgebraic class specifica-
tion over a plain ground signature which contains only polynomial methods. Let τΣ be
its combined method type. If all method assertions and constructor assertions of S are
invariant with respect to behavioural equality, then there exists a model M = 〈X, c, a〉 of
S such that c is the final τΣ coalgebra satisfying the method assertions AM .

Proof Under the assumptions the semantics of τΣ is a polynomial functor. For poly-
nomial functors coalgebra morphisms are bisimulations (Proposition 2.6.12), therefore
every τΣ coalgebra morphism preserves the validity of the method and constructor asser-
tions. Let z : Z //JτΣK(Z) be the final τΣ coalgebra (which exists by Theorem 2.6.20).
Let X be the greatest invariant contained in the interpretation of the method assertions
on Z. By Proposition 2.6.8 there is an induced coalgebra structure on X, this gives c. It
remains to construct the constructor algebra for X. Note that X is nonempty because
it must contain the image of the state space of the assumed model. Therefore one can
set a = ! ◦ a′, where a′ is a constructor algebra of an arbitrary model. �
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4.5.4. Class Specifications in CCSL

The concrete syntax of the higher-order logic for ccsl is in Figure 4.10. ccsl follows
quite closely the concrete syntax of pvs. Especially the ASCII representations of the
logical notation and the projections is the same as in pvs. There are the following
points to note with respect to Figure 4.10:

• ccsl has concrete syntax for expressions that are syntactic sugar with respect to
Definition 4.5.1, for instance quantification and abstraction over several variables
simultaneously, the LET construct, function update with WITH, or the keyword IFF.

• The keywords ALWAYS and EVENTUALLY give the modal operators from the preced-
ing subsection. The correspondence between the symbolic notation of this chapter
and the concrete grammar of ccsl is as follows:

�M (λx : Self . P ) ≡ ALWAYS LAMBDA( x : SELF ) . P FOR { M }
♦M (λx : Self . P ) ≡ EVENTUALLY LAMBDA( x : SELF ) . P FOR { M }

The optional identifier with an argument list before the method list can be used to
access a modal operator of a different class specification. If it is omitted it defaults
to the enclosing class specification.

• The syntax for CASES provides terms for the abstract data types. Abstract data
types are in Section 4.6. I define the semantics of the case construct in Subsec-
tion 4.7.1. The case construct in Terms(Σ) corresponds to case construct in ccsl
for the abstract data type Coproduct, which is defined in the prelude (see Exam-
ple 4.3.2 and Subsection 4.9.8).

• ccsl allows object-oriented syntax for method calls: One can write x.m(−) instead
of m(x,−) to give the specifications a bit more object-oriented look and feel.

• The projections are PROJ N, where N stands for a natural number.

• Infix operators are sequences of special characters like *, the details are in Subsec-
tion 4.9.5.

• ccsl tries to be relaxed about the use of delimiters. For instance, variable binders
like FORALL can be separated from the following formula by either a colon or a dot
(thus comforting users of pvs and isabelle). The last delimiter in a list of cases
or let bindings is optional.

• The precedence for the constructions in Figure 4.10 increases from the top to the
bottom. So conjunction (AND) binds stronger then disjunction (OR). For instance
the expression f1 OR f2 f3 .m is parsed as f1 OR ((f2 f3) .m).
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formula ::= FORALL ( vardecl {| , vardecl |} ) ( : | . ) formula
| EXISTS ( vardecl {| , vardecl |} ) ( : | . ) formula
| LAMBDA ( vardecl {| , vardecl |} ) ( : | . ) formula
| LET binding {| ( ; | , ) binding |} [ ; | , ] IN formula
| formula IFF formula
| formula IMPLIES formula
| formula OR formula
| formula AND formula
| IF formula THEN formula ELSE formula
| NOT formula
| formula infix operator formula
| ALWAYS formula FOR

[ identifier [ argumentlist ] :: ] methodlist
| EVENTUALLY formula FOR

[ identifier [ argumentlist ] :: ] methodlist
| CASES formula OF caselist [ ; | , ] ENDCASES
| formula WITH [ update {| , update |} ]

| formula . qualifiedid
| formula formula
| TRUE

| FALSE

| PROJ N

| number
| qualifiedid
| ( formula : type )

| ( formula {| , formula |} )

vardecl ::= identifier {| , identifier |} : type

methodlist ::= { identifier {| , identifier |} }
binding ::= identifier [ : type ] = formula

caselist ::= pattern : formula {| ( ; | , ) pattern : formula |}
pattern ::= identifier [ ( identifier {| , identifier |} ) ]

update ::= formula := formula

Figure 4.10.: ccsl Syntax for expressions and formulae
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• The ccsl compiler defines four special class members that make the notions of
invariants, bisimulations, coalgebra morphisms (in the form of recognisers), and
coinduction (in the form of the coreduce combinator) available in the logic of ccsl.
Their names are as follows:

concept identifier for class 〈class〉 relevant definition
invariant 〈class〉 class invariant? Definition 4.4.10 (1)
bisimulation 〈class〉 class bisimulation? Definition 4.4.10 (3)
morphism 〈class〉 class morphism? Definition 3.2.2
coinduction coreduce Item Coreduce on page 201

The types of these identifiers depend on the method declarations that are present
in the signature, see Subsection 4.7.1 for the details. The identifier for coreduce
does not depend on the class name, so one usually has to use a qualified identifier
for it (see Subsection 4.9.6 on page 222). Figure 4.11 shows as an example how to
express in ccsl that the predicate Ffinite from Example 4.5.10 is an invariant for
queues.

Apart from coreduce (whose semantics also depends on the method assertions)
these identifiers are visible in method and constructor assertions. (Technically the
compiler makes a ground signature extension just before processing method and
constructor assertions.)

• The current compiler version supports only one kind of immediate constants: nat-
ural numbers. Their type can be changed via the -nattype command line switch,
see Subsection 4.9.9.

The syntax for class specifications was already given in Subsection 4.4.2. Recall that
the sections for attributes, methods and constructors contributed to the signature. The
section for assertions contains method assertions in the sense of Definition 4.5.14, the
section for creation conditions contains constructor assertions. The theorem section gives
one the opportunity to state theorems in the logic of ccsl that are believed to hold for
all models. From the point of view of the ccsl compiler the theorem section contains
arbitrary formulae (without influence on the semantics of the class specification) that
should get translated into the logic of the target theorem prover. The syntax of these
sections is as follows:

assertionsection ::= ASSERTION {| importing |} [ assertionselfvar ]
{| freevarlist |} namedformula {| namedformula |}

assertionselfvar ::= SELFVAR identifier : SELF

freevarlist ::= VAR vardecl {| ; vardecl |}
creationsection ::= CREATION {| importing |} {| freevarlist |}

namedformula {| namedformula |}
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theoremsection ::= THEOREM {| importing |} {| freevarlist |}
namedformula {| namedformula |}

namedformula ::= identifier : formula ;

All three sections can contain an arbitrary number of (named) formulae. The im-
portings are explained in Section 4.9.4. Every assertion section can contain a SELFVAR

declaration for the free variable that can occur in method assertions. Variables declared
with the keyword VAR constitute a context for all formulae of the affected section. This
is syntactic sugar: The ccsl compiler universally quantifies all the variables declared
with VAR on the outermost level.

The complete queue specification in ccsl syntax is in Figure 4.11. Besides the three
assertions Fempty, Ffilled, and Fnew from Example 4.5.15 it contains also two theorems. The
first one corresponds to Equation 4.3 and the second one states that the predicate Ffinite

from Example 4.5.10 is an invariant.16 The ccsl compiler translates the two theorems
into lemmas in a separate pvs file. The utility lemmas that are necessary for the two
theorems are in the pvs theory QueueModal, to make them available I add an appropriate
importing clause.

In the remainder of this subsection I show how the ccsl compiler translates the two
queue assertions into pvs. Further below I discuss how the compiler treats attribute
declarations and how the associated update assertions look like.

During type checking the ccsl compiler records that the queue assertions use
behavioural equality on the type Lift[A × Self]. Therefore it generates the theo-
ry QueueReqObsEq, which contains the following lifting of bisimilarity to the type
Lift[A× Self].

c : Var QueueSignature[Self, A]

ObsEq Lift A Self(c) : [[Lift[[A, Self]], Lift[[A, Self]]] −> bool] =
Lambda(l1 : Lift[[A, Self]], l2 : Lift[[A, Self]]) :

Cases l1 OF
bot : bot?(l2),
up(p0) : up?(l2) And PROJ 1(p0) = Proj 1(down(l2)) And

bisim?(c)(PROJ 2(p0), PROJ 2(down(l2)))
Endcases

The method assertions are translated into predicates on queue coalgebras. For the
method assertion q empty the compiler generates the predicate q empty?. The follow-

16The distributed sources contain also a theorem that corresponds to Equation 4.2. Unfortunately it
does not fit into the figure.
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Begin Queue[ A : Type ] : ClassSpec
Method

put : [Self, A] −> Self;
top : Self −> Lift[[A,Self]];

Constructor
new : Self;

Assertion Selfvar x : Self
q empty : x.top ∼ bot Implies

Forall(a : A) . x.put(a).top ∼ up(a,x);

q filled : Forall(a1 : A, y : Self) . x.top ∼ up(a1, y) Implies
Forall(a2 : A) . x.put(a2).top ∼ up(a1, y.put(a2));

Creation
q new : new.top ∼ bot;

Theorem
Importing QueueModal[Self, A]

strong reachable : Forall(p, q : Self) :
Let finite? : [Self −> bool] = Lambda(q : Self) :

(Eventually Lambda(x : Self) : x.top = bot For {top}) q
IN

finite? p And finite? q Implies
(Eventually

(Eventually Lambda(r : Self) : r ∼ q For {put})
For {top}

) p;

finite invariant :
Let finite? : [Self −> bool] = Lambda(q : Self) :

(Eventually Lambda(x : Self) : x.top = bot For {top}) q
IN

Queue class invariant?(put, top)(finite?) ;
End Queue

Figure 4.11.: The queue specification in ccsl syntax
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ing material is taken from the theory QueueSemantics.

q empty?(c) : [Self −> bool] = Lambda (x : Self) :
ObsEq Lift A Self(c)(top(c)(x), bot) Implies
Forall(a : A) : ObsEq Lift A Self(c)(top(c)(put(c)(x, a)), up(a, x))

Observe that the compiler inserts coalgebras to make the methods dependent on a model.
The assertion q filled is translated into pvs in the same way. All such translated method
assertions are combined into one 〈class〉Assert? predicate, which holds precisely on those
coalgebras that fulfil all method assertions.

QueueAssert?(c) : bool =
Forall(x : Self) : q empty?(c)(x) And q filled?(c)(x)

In a similar way the constructor assertions are translated into predicates on the
constructor algebra. Like in the queue example the constructor assertions can contain
methods. Therefore the predicates for the constructor assertions depend on an inter-
pretation of the methods. In the pvs translation this is captured with an additional
argument c:

q new?(c) : [QueueConstructors[Self, A] −> bool] =
Lambda(z : QueueConstructors[Self, A]) :

ObsEq Lift A Self(c)(top(c)(new(z)), bot)

QueueCreate?(c) : [QueueConstructors[Self, A] −> bool] =
Lambda(z : QueueConstructors[Self, A]) : q new?(c)(z)

Finally the predicates 〈class〉Assert and 〈class〉Create are combined into an recogniser
of queue models:

QueueModel?(c : QueueSignature[Self, A], z : QueueConstructors[Self, A]) : bool=
QueueAssert?(c) And QueueCreate?(c)(z)

The construction of a model of the queue specification in the target theorem prover
consists of a prove of a theorem of the form

model : Proposition QueueModel?[QueueState, A](Queue c, Queue constr)

where QueueState is the type of the state space of the model and A is a type parameter.
The records Queue c and Queue constr contain (the user defined) interpretation of the
queue signature.

As I said before an important task of the ccsl compiler is the generation of lemmas.
For every method and constructor assertion the compiler generates one lemma. The
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lemma for the assertion q empty looks as follows:

q empty : Lemma
Forall(c : QueueSignature[Self, A], x : Self) : QueueAssert?(c) Implies

ObsEq Lift A Self(c)(top(c)(x), bot) Implies
Forall(a : A) : ObsEq Lift A Self(c)(top(c)(put(c)(x, a)), up(a, x)

Let me now discuss attribute declarations and their associated assertions. If the signa-
ture of the class contains attributes, then the compiler generates not only additional
method declarations. It also generates additional assertions that describe the behaviour
of the attributes with respect to the generated update methods. Assume for an exam-
ple a specification with the following attribute declarations (where U and V are type
parameters):

Attribute
a1 : Self −> Bool;
a2 : [Self, U] −> V;

As update methods the compiler generates the following two method declarations.

set a1 : [Self, Bool] −> Self;
set a2 : [Self, U, V] −> Self;

For each combination of attribute and update method there is an update assertion gen-
erated that describes if and how the attribute changes. In ccsl syntax these assertions
would look as follows.

Assertion SelfVar x : Self
a1 set a1 : Forall (y : Bool) : a1(set a1(x, y)) = y;

a1 set a2 : Forall (u : U, v : V) : a1(set a2(x, u, v)) = a1(x);

a2 set a1 : Forall (y : Bool, u : U) : a2(set a1(x, y), u) = a2(x, u);

a2 set a2 : Forall (u1 : U, u2 : U, v : V) : a2(set a2(x, u1, v), u2) =
IF u1 = u2 Then v Else a2(x, u2);

4.6. Abstract Data Types

Abstract data types are widely accepted as the right formalism to specify finitely gen-
erated data structures such as lists or trees. Many functional programming languages
(e.g., SML (Milner et al., 1991), ocaml (Leroy et al., 2001), and Haskell (Augustsson
et al., 1999; Hudak et al., 1992)) allow the definition of abstract data types. The logic of
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the theorem provers pvs and isabelle/hol has been extended with means to specify
abstract data types (Owre and Shankar, 1993; Berghofer and Wenzel, 1999).

Although it is possible, it does not make much sense to model abstract data types
with behavioural types. Therefore ccsl contains the possibility to specify abstract data
types as initial algebras. This way, the decision whether to choose an algebraic or a
coalgebraic approach to model a given type is left to the user. Further, it is possible to
mix abstract data type specifications with coalgebraic class specifications, this leads to
iterated specifications, see Section 4.7.

For reasons that have been described in the introduction of this chapter the ccsl
compiler accepts currently only abstract data type specifications without axioms. As a
consequence also this chapter restricts to abstract data types. There is no problem with
general algebraic specifications. The extension of ccsl with general algebraic specifica-
tions is one of the points that remain to be done in the future.

Definition 4.6.1 (ADT) Assume a ground signature Ω. An abstract data type specifi-
cation is a finite set Σ of constructor declarations ci : σi where σ is a constructor type.
The type variables occurring in the σi are the type parameters of the abstract data type
specification.

Recall from Definition 4.2.7 (on page 142) that a constructor type is a type expression
σ ⇒ Self such that Self occurs in σ only strictly positive. This restriction in the above
definition is necessary, because initial algebras exist only for certain functors (Gunter,
1992; Owre and Shankar, 1993; Berghofer and Wenzel, 1999).

The semantics of abstract data type specifications is given by a collection of initial
algebras.

Definition 4.6.2 Let Σ be an abstract data type specification with n type parameters
and k constructors c1, . . . , ck. Let σΣ = TC(c1) + · · · + TC(ck) denote the combined con-
structor type of Σ. A model for Σ is an indexed collection of pairs

(
〈X, a〉U1,...Un

)
Ui∈|Set|

such that for each interpretation U1, . . . , Un of the type variables

JσΣKU1,U1,U2,U2,...,Un,Un(X,X) a // X

is an initial algebra.

4.6.1. CCSL Syntax for Abstract Data Types

The concrete syntax for abstract data type specifications is similar to that of class
specifications. The keyword ADT indicates an abstract data type.

adtspec ::= BEGIN identifier [ parameterlist ] : ADT

{| adtsection |}
END identifier
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Begin tree[A, B : Type] : Adt
Constructor

leaf : B −> Carrier;
node : [Carrier, A, Carrier] −> Carrier

End tree

Figure 4.12.: The abstract data type of binary trees in ccsl

adtsection ::= adtconstructorlist [ ; ]

adtconstructorlist ::= CONSTRUCTOR adtconstructor {| ; adtconstructor |}
adtconstructor ::= identifier [ adtaccessors ] : type

| identifier [ adtaccessors ] : type -> type

adtaccessors ::= ( identifier {| , identifier |} )

The accessors are syntactic sugar, so let me ignore them for a moment. The set of
declared adt-constructors constitute an abstract data type specification. The compiler
checks that the types are constructor types. Recall, that for this presentation I assume
only one special type Self, whereas the ccsl compiler has two keywords for it, SELF and
CARRIER. In abstract data type specification one has to use the latter one.

From every constructor the compiler derives a recogniser predicate by appending a
question mark (for pvs) or prepending the prefix is (for isabelle). A recogniser holds
for an element of the abstract data type if this element was built with the corresponding
constructor.

The optional accessors declare (partial) accessor function. If accessors are given then
their number must match the number of arguments of the constructor and their names
must be unique. Accessors allow one to decompose an element of the abstract data type
and extract the arguments of the constructor with which this element was built. Because
accessors are partial functions, they cannot be formalised in the setting of this thesis.
Nevertheless the ccsl compiler allows them. The compiler together with the semantics of
the theorem provers pvs and isabelle/hol ensure a correct treatment of these partial
functions (I discussed this issue already in Example 4.3.2).

Figure 4.12 shows as an example the abstract data type of binary trees in ccsl
syntax.

The compiler does not generate the semantics for abstract data types. It rather
outputs an abstract data type declaration in the syntax of the target theorem prover.
Both isabelle/hol and pvs use an initial semantics for their abstract data types.
In isabelle this is implemented as a conservative extension17 (Berghofer and Wenzel,
1999); pvs uses an axiomatic approach (Owre and Shankar, 1993).

17Provided the quick and dirty flag is set to false.
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The simple mapping of ccsl data type definitions to the target theorem prover has
one serious drawback: Inside an abstract data type all type constructors stemming from
a class specification may only be instantiated with constant types. This is because both
pvs and isabelle place restrictions on the types that may be used in a nested recursion
(on the type level) with an abstract data type definition. In principle, nested recursion
with (some) behavioural types could be allowed, see the following Section 4.7.

The theorem provers pvs and isabelle give different support for their versions of
abstract data types: Recognisers, accessors, and the map combinator are not provided
by the data type package of isabelle/hol. More importantly, some notions, which are
needed when abstract data types occur inside coalgebraic class specifications, are not
supported in the needed generality or are not supported at all. For instance neither pvs
nor isabelle defines relation lifting for abstract data types. pvs generates for every
abstract data type the combinators every and map. For an abstract data type in which
all type variables occur at strictly positive position the combinator every coincides with
predicate lifting and the combinator map with the morphism component of the semantics
of the data type. If a type variable occurs not strictly positive then pvs does not generate
map. The combinator every is still generated but disregards all type variables occurring
not only strictly positive. So in this case every cannot be used for predicate lifting.

The ccsl compiler works hard to blur the differences between data type definitions
in pvs and isabelle. It also fixes some of their shortcomings. For isabelle the compiler
generates definitions for recogniser predicates, and accessor functions. For both pvs and
isabelle the compiler generates predicate and relation lifting for the abstract data type
as described in (Hensel, 1999) and in the following Section.

In the remainder of this section I show what the ccsl compiler generates for the
data type of trees of Figure 4.12. For a diversion I show this time what is generated for
isabelle/hol.

As first the data type tree is defined:

datatype (’A, ’B) tree =
leaf "’B"

| node "(’A, ’B) tree" "’A" "(’A, ’B) tree"

isabelle/hol data type declarations have an SML like syntax. Different constructors
are separated with a vertical bar and the argument types follow the name of the construc-
tor. Identifiers that start with a tick like ’A are free type variables. Instantiations of type
constructors are written in a postfix form. The isabelle type expression (’A, ’B) tree
corresponds to tree[A, B] in pvs. isabelle requires the user to enclose all special syntax
from the object logic in double quotes. The ccsl compiler behaves conservatively and
puts double quotes around all critical entities.

For the definition of functions over data types the isabelle/hol documentation
advocates the primrec feature. However, I found that functions defined with primrec
are quite slow to type check. More importantly, primec is quite difficult to use with
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nested data types.18 I therefore decided to base all definitions on a self-defined reduce
combinator. This has the additional advantage that more modules in the ccsl compiler
get independent of the target theorem prover (in pvs the reduce combinator is provided
by the system). The disadvantage is that for isabelle the ccsl compiler has to derive
the reduce combinator from the internal recursion combinator of isabelle. In the tree
example this looks as follows:

constdefs reduce tree :: "(’B => ’Result) =>
(’Result => ’A => ’Result => ’Result) =>
(’A, ’B) tree => ’Result"

"reduce tree leaf fun node fun == %(t :: (’A, ’B) tree) .
tree rec ( %(b1 :: ’B) . leaf fun b1)

( %(x1 :: (’A, ’B) tree) (a1 :: ’A) (x2 :: (’A, ’B) tree)
(x3 :: ’Result) (x4 :: ’Result) . node fun x3 a1 x4) t"

In isabelle a constant definition starts with the keyword constdefs, followed by a type
annotation (on the first three lines) and a string that contains a meta equality ( == ). The
higher-order function reduce tree takes as argument a tree algebra on ’Result (consisting
of two functions, one for the constructor leaf and one for node). It returns the unique
tree–algebra morphism originating in the initial tree algebra (compare Item reduce in
Subsection 4.7.1 on page 195). The definition of reduce tree uses isabelle’s internal
recursion operator tree rec. This internal combinator could be paraphrased as strong
reduce combinator for the unfolded data type. The percent sign % is the ascii version
of λ in isabelle.

The reduce combinator gives the induction proof principle (sometimes known as
primitive recursion) for trees. It allows one to define recursive functions on trees without
doing recursion. For instance to count the number of nodes in a tree t one can use the
following expression:

reduce tree (% (b :: ’B) . 0) (% (l :: nat) (a :: ’A) (r :: % nat) . l + r +1) t

The data type package of isabelle/hol does neither provide accessors nor recog-
niser predicates. The ccsl compiler generates code to define them. For instance:

constdefs leaf acc :: "(’A, ’B) tree => ’B"
"leaf acc t == case t of

leaf b => b
| node p0 a p1 => arbitrary"

In case one applies leaf acc to a node one gets arbitrary as result, where arbitrary is
special constant that inhabits every type.19

18The problem is that one cannot pass the function being defined by the current primrec into an
already defined (higher-order) function. Therefore, for nested data types, one cannot use the map
combinator of the nested data type.

19Recall that the semantics of isabelle/hol is based on an universe of nonempty sets. So arbitrary
can be obtained by applying the Axiom of Choice to every type.
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The recognisers can be easily defined with reduce, as example I show the recogniser
for leafs:

constdefs is leaf :: "(’A, ’B) tree => bool"
"is leaf == % (t :: (’A, ’B) tree) .

reduce tree (% (b :: ’B) . True)
(% (x1 :: bool) (a :: ’A) (x2 :: bool) . False) t"

There are three more definitions that are generated for every abstract data type:
The map combinator, predicate lifting and relation lifting. Here I show only the map
combinator and predicate lifting. Relation lifting for abstract data types is quite difficult
to understand. It is explained in Item 3 of Remark 4.7.1 (on page 197f).

constdefs treeMap :: "(’A1 => ’A2) => (’B1 => ’B2) =>
(’A1, ’B1) tree => (’A2, ’B2) tree"

"treeMap f g == % (t :: (’A1, ’B1) tree) .
reduce tree (% (b :: ’B1) . leaf (g b))

(% (p0 :: (’A2, ’B2) tree) (a :: ’A1)
(p1 :: (’A2, ’B2) tree) . node p0 (f a) p1) t"

The map combinator takes two functions as arguments, one for transforming the labels
in the leafs and one for the labels of the nodes and applies both functions recursively in
the whole tree.

constdefs
Everytree :: "(’A => bool) => (’B => bool) => (’A, ’B) tree => bool"
"Everytree P Q ==

reduce tree (% (b :: ’B) . Q b)
(% (x1 :: bool) (a :: ’A) (x2 :: bool) .

(x1 = True) & (P a) & (x2 = True))"

Predicate lifting takes two argument predicates, one on the type parameter A and one
on B. It applies these predicates in the whole tree and returns true if all labels are in
the supplied predicates (the ampersand & denotes conjunction in isabelle).

4.7. Iterated Specifications

In analogy with the iterated data types of (Hensel, 1999) and (Hensel and Jacobs, 1997)
I use the informal term iterated specification to describe a situation in which a specifi-
cation Si depends on a specification Sj. Both involved specifications Si and Sj can be
either coalgebraic class specifications or abstract data type specifications. In a typical
example the dependence on Sj comes from the signature of Si, which may involve a type
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Begin list[ T : Type ] : Adt
Constructor

null : Carrier;
cons( car, cdr ) : [T, Carrier] −> Carrier

End list

Begin InfTreeFin[ T : Type ] : ClassSpec
Method

branch : Self −> List[[T, Self]];
End InfTreeFin

Figure 4.13.: Trees of finite width and (possibly) infinite depth in ccsl (from (Hensel,
1999))

constructor CSj
whose semantics is a distinguished model of Sj. However, it can also be

the case that only some assertion of Si uses a constructor of Sj. Note that the use of
iterated refers to iteration of different induction and coinduction principles that come
into play in the described situation. Iterated does not refer to a mutual recursion of the
specifications Si and Sj. In fact in ccsl the dependency relation between specifications
is always a strict order.

An example of an iterated data type (that is an iterated specification without as-
sertions) is the behavioural data type of trees of (possibly) infinite depth and arbitrary
but finite width. The example appears originally in (Hensel, 1999). Figure 4.13 shows it
in ccsl syntax. The crucial point here is, that the class specification InfTreeFin involves
the type constructor List. This type constructor and its semantics is defined by the first
specification List.

The functors that capture signatures of iterated specifications are usually called data
functors . Data functors have been studied in (Jay, 1996; Cockett and Spencer, 1992)
and also in (Hensel and Jacobs, 1997; Hensel, 1999; Rößiger, 2000a; Rößiger, 2000b).
The work of Cockett and Spencer led to the categorical programming language Chari-
ty (Cockett and Fukushima, 1992). In a sense ccsl can be viewed as the specification
language for Charity. The work of Hensel and Jacobs describes definition and proof
principles for iterated data types under the assumption that suitable initial algebras and
final coalgebras do exist in the base category. Rößiger proves that initial algebras and
final coalgebras exist in Set for all (covariant) data functors. These latter two results
are plugged together in this section.

The iterated specifications of ccsl are more general than the iterated data types that
have been considered by Hensel, Jacobs, and Rößiger. Up to my knowledge, there are a
number of open questions related to the semantics of iterated specifications. Therefore,
a complete treatment of iterated specifications is beyond the scope of the present thesis.
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The approach taken here is very pragmatic: Until better solutions are available, ccsl
uses predicate lifting and relation lifting for abstract data types and behavioural types as
described in (Hensel and Jacobs, 1997; Hensel, 1999). Because of the greater generality
of iterated specifications in ccsl, the various liftings are not always well defined (for
instance in case a class contains binary methods). In case they are not defined certain
restrictions are imposed on iterated specifications (via improper ground signatures).

The first subsection describes the technicalities. The material is taken from (Hensel,
1999) and adopted to the setting of the present Chapter. I can only give the definitions
here, for the rationale behind them I refer the reader to (Hensel and Jacobs, 1997)
or (Hensel, 1999). The second subsection characterises those iterated specifications which
have a well-defined semantics. The third subsection gives guidelines on how to ensure
consistency for iterated specifications.

4.7.1. Semantics of Iterated Specifications

The technical means to allow type checking and semantics for iterated specifications are
ground signatures. A ccsl specification consists of a finite list of entities S1,S2, . . . ,Sn,
standing one after each other in one file. Each of the Si is either a ground signature
extension, a class specification, or an abstract data type specification. For each of the
Si there is a ground signature Ωi and a model Mi of it, which are both not explicit in
the ccsl source. The first pair 〈Ω0,M0〉 consists of the empty ground signature (i.e.,
|Ω0| = ∅ and Ω0σ = ∅) and the empty model. Each of the Si can define type constructors
and constants. These items are added20 to Ωi and Mi to yield Ωi+1 and Mi+1. Then
Ωi+1 is used to type check Si+1 and Mi+1 is used for the semantics of Si+1. This way a
specification has access to (or can use) all the specifications and all the ground signature
extensions that appear before it.

In the following I consider an arbitrary S from the finite list of Si with associated
ground signature Ω and a model M of Ω. For the three possibilities (S is a ground signa-
ture, an abstract data type, or a class specification) I describe which type constructors
and constants are defined by S and what semantics they have. For some of the items
a semantics can only be defined if the model M is proper and/or additional conditions
hold. For these items I take the following approach: I first describe their semantics. If
this is well defined, then the corresponding item is defined by S and added to the ground
signature. The item stays undefined (and is not added to the ground signature) other-
wise. This way it can happen that the ground signature Ω′ (or its model) that is build
from Ω and S is not proper, despite the fact that Ω (or its model) is proper. This has
the described consequences for subsequent specifications.

The ccsl compiler deviates slightly from what I describe in the following. It generally
uses only one interpretation for any given type variable, see Subsection 4.2.4.

20I disregard name clashes here. In the ccsl compiler later defined items hide earlier ones with the
same name (there is no overloading).
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Ground Signature Extensions

Let S be a ground signature extension. To state the obvious, S defines all items which
are declared in S. The semantics is taken from the environment or from the ccsl source
as described in Subsection 4.3.

Abstract Data Type Specifications

Let S be an abstract data type specification with k type parameters α1, . . . , αk and
n constructor declarations c1 : σ1, . . . , cn : σn. Recall from page 151 that the combined
constructor type of S is defined as σS = TC(c1)+· · ·+TC(cn). Recall also that the special
type Self, which functions in the σi as place holder for the data type being defined, occurs
in all the σi only strictly covariantly. Therefore I drop the contravariant argument, when
considering the semantics of σS . For data type specifications the variance of the type
parameters is defined as

Vx(S)
def
= Vx(σS)

The following list describes what items are defined by the specification S. In the descrip-
tion I use U to denote an arbitrary interpretation of the type variables α = α1, . . . , αk.
For the interpretation of types positive and negative occurrences of the type variables are
interpreted with different sets. However, for terms every type variable is interpreted by
only one set. So depending on the context U denotes either 2k sets U−

1 , U
+
1 , . . . , U

−
k , U

+
k

or only k sets U1, . . . , Uk. Further I set F S
U

(X)
def
= JσSKU(X).

Type Constructor CS Let δU : F S
U

(XU) //XU denote the initial F S
U

algebra. If δU
exists for all interpretations U , then the specification defines the type constructor
CS of arity k:

` CS :: [ Vα1(S); . . . ;Vαk(S)]

Its semantics is the carrier of the initial algebra:

JCSK(U) = XU

The action on morphisms can be defined via reduce, see below. None of the fol-
lowing items is defined, if δU does not exist for all U .

Constructors For every constructor declaration ci : σi the specification S defines a
constant

α | ∅ ` ci : σi[ CS [α] / Self ]

where [ CS [α] / Self ] denotes the substitution of CS [α] for Self in σi. The semantics
is

JciKU = δU ◦ κi

where κi is the interpretation injection belonging to ci (compare page 153).
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Reduce The (higher-order) function reduce creates the unique algebra morphism out of
the initial JσSK algebra.

α, β | ∅ ` reduceS : (σ1[ β / Self ]× · · · × σn[ β / Self ]) ⇒ CS [α] ⇒ β

Let V be the interpretation of β and fix a list of functions f = f1 : Jσ1KU(V ), . . . ,
fn : JσnKU(V ). Note that the copairing [f1, . . . , fn] is then a function with codomain
V . Now JreduceKU,V (f) is defined as the unique function that makes the following
diagram commute.

F S
U

(XU)
δU //

F S
U

(
JreduceSKU,V (f)

)
�
�
�
�
�

��

XU

JreduceSKU,V (f)

�
�
�
�
�

��
F S

U
(V )

[f1, . . . , fn]
// V

Map The map combinator gives the action of the functor JCSK on morphisms. Recall
from Section 4.3 that for a proper model M of the ground signature Ω the in-
terpretation of the σi can be considered as a functor taking 2k + 1 arguments21

Its action on morphisms is denoted with JσiKg(f) for suitable functions g and f .

For each constructor ci set σ̂i
def
= TC(ci). Let V = V −

1 , V
+
1 , . . . , V

−
k , V

+
k be another

interpretation of the type parameters α1, . . . , αk and let g = g−1 , g
+
1 , . . . , g

−
k , g

+
k be

a list of functions such that

g−1 : V −
1

//U−
1

g+
1 : U+

1
//V +

1

· · ·
g−k : V −

k
//U−
k

g+
k : U+

k
//V +
k

Then, for proper models M of the ground signature, the semantics of CS is ex-
tended to a functor via

JCSK(g) = JreduceSKU,XV

(
Jc1KV ◦ Jσ̂1Kg(idXV

), . . . , JcnKV ◦ Jσ̂nKg(idXV
)
)

Case Distinction For each constructor ci let σ̂i
def
= TC(ci)[ CS [α] / Self ]. The specifica-

tion S defines case distinction as

α, β | ∅ ` caseS :
(
(σ̂1 ⇒ β)× · · · × (σ̂n ⇒ β)

)
⇒ CS [α] ⇒ β

Let V be an interpretation for β, f1, . . . , fn be a suitable vector of functions, and
x ∈ XU . Then

JcaseSKU,V (f1, . . . , fn)(x) =


...

fi(y) if ∃y ∈ Jσ̂iKU . x = δU(κi y)
...

21The contravariant argument for Self is ignored here.
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Recognisers For each constructor declaration ci : σi the specification S defines the
recogniser

α | ∅ ` c?i : CS [α] ⇒ Prop

The semantics is

Jc?iKU(x) = JcaseSKU,bool(f1, . . . , fn)(x)

where fi = λx .> and fj = λx .⊥ for j 6= i.

Predicate Lifting PredCS For predicate lifting consider the following operator for a
fixed list of 2k parameter predicates P .22

Q ⊆ XU
� //

∐
δU

Pred(JσSK)(P ,Q,Q) (4.4)

If this operator has a least fixed point, then the specification S defines predicate
lifting as

α | ∅ ` PredCS : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ CS [α1, . . . , αk] ⇒ Prop

Its semantics is the least fixed point of (4.4).

Relation Lifting RelCS For relation lifting fix 2k parameter relations (such that R+
i ⊆

U+
i × V +

i and R−
i ⊆ U−

i × V −
i ) and consider the following operator.

S ⊆ XU ×XV
� //

∐
δU×δV

Rel(JσSK)(R,S, S) (4.5)

If this has a least fixed point, then the specification S defines relation lifting as

α, β | ∅ ` RelCS : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ CS [α1, . . . , αk]× CS [β1, . . . , βk] ⇒ Prop

The semantics of RelCS is the least fixed point of (4.5).

22(Hensel, 1999) defines this operator as Q ⊆ XU
� // (δU

−1)∗ Pred(· · · ) . However, the equation

(f−1)∗ =
∐

f holds in Pred for isomorphisms f .
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Remark 4.7.1

1. In addition to the items above, the ccsl compiler also defines accessor functions.
Accessor functions cannot be correctly typed in the type theory of the present
chapter (see the remarks on this issue in Example 4.3.2 on page 145). For a con-
structor c : σ1 × · · · × σm ⇒ Self that takes m arguments there are m (partial)
accessor functions

α | ∅ ` accj
c : CS [α] ⇒ σj

They get semantics either as a partial function or as a dependently typed function
via

Jaccj
cKU(x) =

{
yj if ∃y1, . . . , ym . δU(κc(y1, . . . , ym)) = x
undefined otherwise

where κc is the interpretation injection for the constructor c.

2. The semantics of case can be defined via reduce. Consider the following diagram:

F S
U

(XU)

δU

��

F S
U

(precase)
__________ // F S

U
(XU × V )

F S
U

(π1)

��
F S

U
(XU)

〈δU , [f1, . . . , fn]〉

��
XU

precase
____________ // XU × V

π2 // V

By exploiting the arguments f1, . . . , fn one can define an F S
U

algebra on XU × V
(on the right hand side in the preceding diagram). Initiality of δU defines the
unique function precase, which makes the preceding diagram commute. Then one
can define JcaseSKU,V (f1, . . . , fn) = π2 ◦ precase.

3. The predicate lifting for the abstract data type S is defined if the (full) predicate
lifting for JσSK is defined. This is for instance the case, if the ground signature
Ω and its model M are proper. For the relation lifting an analogous statement
holds. Both, the predicate lifting and the relation lifting, are computable func-
tions.23 The definition that I gave on the preceding pages does not describe an
algorithm because I use a fixed point construction. The theorem provers pvs and

23A function is computable if there exists a algorithm (in the form of a Turing machine for instance)
that can compute the function.

197



4. The Specification Language CCSL

isabelle/hol admit such definitions. However, in proofs it is often easier to work
with definitions that describe a terminating algorithm (because then one can turn
the definition into a terminating rewrite system). For this reason the ccsl com-
piler uses the following —equivalent— definitions for predicate and relation lifting
of abstract data types.

For predicate lifting the ccsl compiler outputs the following (I take the liberty to
omit the technical noise of the U and of J−K):

PredCS (P ) = reduceS
(

Pred(Jσ1K) (P , tt, tt), . . . ,Pred(JσnK) (P , tt, tt)
)

Here tt ⊆ bool
def
= {>} is the predicate that holds only for true.

The relation lifting for abstract data types is slightly more complicated to define.
The idea is as follows: From an element u ∈ XU one computes a function f ∈ XV ⇒
bool such that for v ∈ XV one has f v = > if and only if JRelCSKU,V (R)(u, v). As
definition mechanism for functions with domain XU there is only reduce available,
therefore one needs an algebra acting on XV ⇒ bool. This algebra is defined
with a particular instantiation of the operator for relation lifting. Recall from
Definition 4.4.7 (2) that relation lifting is a function of the following type

Rel(τ)(R,S) : JτKU(Y ) × JτKV (X) // bool (∗)

where R is a list of parameter relations Ri ⊆ Ui × Vi and S ⊆ Y ×X (I ignore the
contravariant argument relation for Self). Define now

Rel′(τ)(R) : JτKU(X ⇒ bool) × JτKV (X) // bool

Rel′(τ)(R)
def
= Rel(τ)(R, λf ∈ X ⇒ bool, y ∈ X . f y)

That is, in (∗) one takes Y = X ⇒ bool and uses an S that performs function
application. Now, for any constructor ci : σi ⇒ Self, there is the following function

Relci
(R) : JσiKU(XV ⇒ bool) // XV ⇒ bool

Relci
(R)

def
= λf : JσiKU(XV ⇒ bool) . λy : XV .

Jc?iKV (y) ∧ Rel′(JσiK)(R)(f, δV
−1 y)

Here ∧ should be evaluated in a non-strict way: if the recogniser c?i returns false
then the result is false. Otherwise the inverse of the algebra δV delivers something
in JσiKV (XV ), as required by Rel′. Note that the Relci

form an S algebra on XV ⇒
bool and can therefore be passed as argument to reduce:

JRelCSKU,V (R)(u, v) = JreduceSKU,XV ⇒bool

(
· · ·Relci

(R) · · ·
)
u v

This definition yields the least fixed point of 4.5.
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Begin list[ A : Type ] : ADT
Constructor

null : Carrier;
cons( car, cdr ) : [A, Carrier] −> Carrier

End list

Figure 4.14.: The data type of lists from the ccsl prelude

RelEvery(R: [[U , V] −> bool]) : [[list[U] , list[V]] −> bool] =
Lambda (u: list[U] , v: list[V]) :

reduce[U, [list[V] −> bool]]
(null?[V] ,
Lambda (x: U , y: [list[V] −> bool]) : Lambda (l: list[V]) :

cons?[V](l) And R(x , car[V](l)) And y(cdr[V](l)))
(u)(v)

Figure 4.15.: The relation lifting for lists, generated by the ccsl compiler

As an example for this mind twisting definition I show in Figure 4.15 what the
ccsl compiler generates as relation lifting for the abstract data type of lists from
Figure 4.14. The relation lifting is called RelEvery there and instead of the inverted
list algebra the ccsl compiler uses the two accessors car and cdr. All instantiations
are given in square brackets after the identifier.

Example 4.7.2 This example shows the items that are defined by the abstract data
type specification of lists from the ccsl prelude. For convenience Figure 4.14 repeats
the ccsl source code. It defines the type constructor

` list : [(?, 0)]

Its semantics is the functor list : Set //Set that maps every set A to the initial list
algebra [nilA, consA] : 1 + A× A∗ //A∗ , where A∗ is the set of finite words over A. As
before I ignore the argument for the negative occurrences of A.

For a function f : X //Y the action of the functor list(f) : X∗ //Y ∗ (i.e., the map
combinator for lists) is defined as

list(f)(nilX) = nilY

list(f)(consX(x, l)) = cons(f x, list(f)(l))
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In the context of lists, reduce is sometimes called foldright. For a constant y ∈ Y and a
function g : X × Y //Y it is defined as

reduce(y, g)(nilX) = y

reduce(y, g)(consX(x, l)) = g(x, reduce(y, g)(l))

For a parameter predicate P ⊆ X the predicate lifting Predlist(P ) ⊆ X∗ is

Predlist(P )(nilX) = >
Predlist(P )(consX(x, l)) = P x ∧ Predlist(P )(l)

For relation lifting one has to stare for a while at Figure 4.15 to see that it is equivalent
with the following characterisation (for R ⊆ U × V )

Rellist(R)(l1, l2) =


> if l1 = nilU ∧ l2 = nilV

R(u, v) ∧ Rellist(R)(l′1, l
′
2)

if l1 = consU(u, l′1)
∧ l2 = consV (v, l′2)

⊥ otherwise �

Coalgebraic Class Specifications

I turn now to the description of the items that class specifications contribute to the
current ground signature.

Let S be a class specification over the ground signature Ω with a model M of Ω.
Assume that the signature of S contains k type parameters α = α1, . . . , αk, n method
declarations mi : τi, and m constructor declarations cj : σj. Subsection 4.4 defines
(on page 151) the combined method type of S as τS = TM(σ1) × · · · × TM(σn) and
the combined constructor type σS = TC(σ1) + · · · + TC(σm). The variance of the type
parameters and of Self in S is defined as

Vx(S)
def
= Vx(τS)

What items are defined by S in the following depends (among other things) on whether S
is processed with final or loose semantics. Loose semantics is the default, final semantics
can be chosen with the keyword FINAL, see Subsection 4.4.2. Like on the preceding
pages I use U to denote an arbitrary interpretation of the type variables α and also
F S

U
(Y,X) = JτSKU(Y,X).

Type Constructor CS The specification S defines the type constructor CS of arity k:

` CS :: [ Vα1(S); . . . ;Vαk(S)]

The semantics of CS should be a functor taking 2k arguments (compare Defini-
tion 4.2.5 on page 139). However, in many cases this functor is not fully defined.
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The morphism component of JCSK is only defined under the following two condi-
tions: The specification S must request final semantics and S must not contain any
assertions. If the specification S does contain assertions then the object component
of JCSK is only defined if the respective arguments for positive and negative occur-
rences are equal, that is if U−

i = U+
i , regardless whether final or loose semantics

is used. In the following I simply state the definitions without repeating these side
conditions again.

For final semantics let εU : XU
//F S

U
(XU , XU) denote the final F S

U
coalgebra satis-

fying the assertions of S.24 For every possible U choose δU such that (〈XU , εU , δU〉)U

is a model of S.

For loose semantics choose an arbitrary model (〈XU , εU , δU〉)U of S.

Then
JCSK(U) = XU

If the specification S contains no assertions and if non of the αi has mixed variance,
then for final semantics the mapping JCSK is extended to a functor, see Item Map
below.

Methods For each method declaration mi : τi the specification S defines a symbol

α | ∅ ` mi : τi[ CS [α] / Self ]

Note that τi is a method type, so it can be decomposed into τi = (Self × τ ′i) ⇒ τ ′′i .
The semantics of mi is (as defined in Definition 4.5.3):

JmiKU = λx : XU , p : Jτ ′iKU(XU , XU) . πi(εU(x)) (p)

Here πi is the interpretation projection belonging to the method mi (see page 153).

Constructors For each constructor declaration cj : σj the specification S defines a sym-
bol

α | ∅ ` cj : σj[ CS [α] / Self ]

By definition σj is a constant constructor type, so σj = σ′j ⇒ Self. Now

JcjKU = δU ◦ κj

Coreduce If S is processed with final semantics then there is a (higher-order) function
coreduce (sometimes also called unfold) that creates the unique morphism into the
final coalgebra.

α, β | ∅ ` coreduceS : (τ1[ β / Self ]× · · · × τn[ β / Self ]) ⇒ β ⇒ CS [α]

24Note that such εU might exist, even in case where there is no final coalgebra for FS
U

.
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For the semantics fix an interpretation V of β and let f = f1, . . . , fn be a list
of functions such that fi : JτiKU(V, V ). With some shuffling one can transform
the fi into a F S

U
coalgebra on state space V , denoted with 〈f〉. The semantic of

coreduceS is only defined for those fi for which 〈f〉 fulfils the method assertions of
S. If this is the case then JcoreduceKU,V (f1, . . . , fn) is the unique function that lets
the following diagram commute.

V
JcoreduceSKU,V (f)

〈f〉
��

___________________ // XU

εU

��
F S

U
(V, V )

F S
U

(V, coreduceSKU,V (f)) MMMMMMMM

&&

F S
U

(X,X)

F S
U

(JcoreduceSKU,V (f), X)q q q q q q q q

xx
F S

U
(V,X)

Map For final semantics the morphism part of JCSK is defined under the following con-
ditions: First, the model M of the ground signature must be proper. Second S
must not contain any assertions.

If these conditions are met, the interpretation of the method types τi can be re-
garded as a functor taking 2k + 2 arguments, whose morphism part is denoted
with JτiKg(f

−, f+). The morphism part of JCSK can now be defined via coreduce:
Fix a second interpretations for the type parameters V = V −

1 , V
+
1 , . . . , V

−
k , V

+
k and

assume a vector of functions

g−1 : U−
1

//V −
1

g+
1 : V +

1
//U+

1

· · ·
g−k : U−

k
//V −
k

g+
k : U+

k
//V +
k

and set g = g−1 , g
+
1 , . . . , g

−
k , g

+
k . Then

JCSK(g) = JcoreduceSKU,XV

(
· · · JτiKg(idXV

, idXV
) (JmiKV ) · · ·

)
Invariant Recogniser The invariant recogniser for S is a functional that takes a sig-

nature model of S and a predicate on the state space of that signature model as
arguments. It returns true if the predicate is an invariant (for the signature model)
according to Definition 4.4.10 (1). The invariant recogniser is defined whenever the
ground signature Ω is proper. Its type is as follows.

α, β | ∅ ` invariantS : (τ1[ β / Self ]× · · · × τn[ β / Self ]) ⇒
(β ⇒ Prop) ⇒ Prop

If 〈class〉 is the name of S in the ccsl source code then the ccsl compiler
generates the identifier 〈class〉 class invariant? for the invariant recogniser.
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Bisimulation Recogniser The bisimulation recogniser takes two signature models and
a relation as arguments. It returns true if the relation is a bisimulation according
to Definition 4.4.10 (3). The type of the bisimulation recogniser is

α, β, γ | ∅ ` bisimulationS : (τ1[ β / Self ]× · · · × τn[ β / Self ]) ⇒
(τ1[ γ / Self ]× · · · × τn[ γ / Self ]) ⇒ (β × γ ⇒ Prop) ⇒ Prop

The compiler uses 〈class〉 class bisimulation? as identifier for bisimulationS .

Morphism Recogniser The morphism recogniser returns true for functions that are
coalgebra morphisms in the sense of Definition 3.2.2 (on page 80). Its type is

α, β, γ | ∅ ` morphismS : (τ1[ β / Self ]× · · · × τn[ β / Self ]) ⇒
(τ1[ γ / Self ]× · · · × τn[ γ / Self ]) ⇒ (β ⇒ γ) ⇒ Prop

The ccsl compiler generates the name 〈class〉 class morphism? for it.

The ccsl compiler treats the three recognisers for invariants, bisimulations, and
morphisms special. They are added to the ground signature after processing the
signature of S such that one can use these recognisers in method and constructor
assertions.

Predicate Lifting PredCS For predicate lifting consider the following operator

Q ⊆ XU
� // ε∗

U
Pred(JτSK)(P ,>XU

, Q) (4.6)

where P = P−
1 , P

+
1 , . . . , P

−
k , P

+
k are 2k parameter predicates. If (4.6) has a greatest

fixed point for all parameter predicates then the specification S defines the constant
for predicate lifting as

α | ∅ ` PredCS : (α1 ⇒ Prop) ⇒ (α1 ⇒ Prop) ⇒
(α2 ⇒ Prop) ⇒ (α2 ⇒ Prop) ⇒ · · · ⇒

(αk ⇒ Prop) ⇒ (αk ⇒ Prop) ⇒ CS [α] ⇒ Prop

The semantics of PredCS is the greatest fixed point of (4.6).

Relation Lifting RelCS For relation lifting consider the following operator for a suitable
list of parameter relations R (with R+

i ⊆ U+
i × V +

i and R−
i ⊆ U−

i × V −
i ):

S ⊆ XU ×XV
� // (ε∗

U
× ε∗

V
) Rel(JτSK)(R,S, S) (4.7)
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Begin Sequence[ A : Type ] : ClassSpec
Method

next : Self −> Lift[[A,Self]];
End Sequence

Figure 4.16.: Possibly infinite queues in ccsl

If it has a greatest fixed point then there is a constant for relation lifting of the
following type

α, β | ∅ ` RelCS : (α1 × β1 ⇒ Prop) ⇒ (α1 × β1 ⇒ Prop) ⇒
(α2 × β2 ⇒ Prop) ⇒ (α2 × β2 ⇒ Prop) ⇒ · · · ⇒ (αk × βk ⇒ Prop) ⇒

(αk × βk ⇒ Prop) ⇒ CS [α]× CS [β] ⇒ Prop

Its semantics is the greatest fixed point of (4.7).

In general, predicate and relation lifting for class specifications is only semi decid-
able.25 So it is impossible to give an algorithmic description for the liftings of class
specification. The ccsl compiler outputs definitions that rely on a the Knaster/Tarski
characterisation of fixed points in complete lattices (Tarski, 1955).

Example 4.7.3 The queue example is not well-suited for illustration here because its
type parameter occurs with mixed variance, so for the queue specification not all items
are fully defined. Let me therefore reconsider the example of possibly infinite sequences
from Section 2.6. Its rather short ccsl version is in Figure 4.16.

The sequence signature contains one type parameter occurring strictly covariant,
therefore

` Sequence :: [(?, 0)]

The final model for sequences is described in Subsection 2.6.7 on page 69. The inter-
pretation for the type constructor Sequence is defined for all interpretations U−, U+ of
the type parameter A. However, since the type parameter A has positive variance, the
argument U− is ignored:

JSequenceK(U−, U+) = Seq[U+]

= {f : N //Lift[U+] | ∀n ∈ N . f(n) = bot implies ∀m > n . f(m) = bot}

25A predicate P is semi decidable if there exists an algorithm with the following properties. If the
algorithm gets x ∈ P as input then it terminates with result ”yes“. On an input x /∈ P it terminates
with ”no“ or runs forever, see (U. Schöning, 1997). In particular the characteristic function of a semi
decidable predicate cannot be computable.
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where bot is the constant associated with the abstract data type Lift, see Example 4.3.2
(on page 144). In the following I silently ignore the argument for the negative occurrences
of the type parameter A.

The interpretation of the method next is as described in Equation 2.8 (on page 69).
The interpretation of coreduce is given by the unique function ! from Equation 2.9. Let
g be a function Y //U × Y + 1 , then h = JcoreduceKU,Y (g) : Y //Seq[U ] is the unique
function for which the following equation holds:

JnextKU(h y) =

{
bot if g y = bot
up(u, h y′) if g y = up(u, y′)

(As an alternative to the definition of coreduce for a concrete representation of the
final model one can use the preceding equation with a lazy evaluation scheme as the
definition of coreduce. This is in fact what the experimental programming language
Charity (Cockett and Fukushima, 1992) does.)

Let me turn to the morphism part of JSequenceK now. Assume a function g : V //U .
Then JSequenceK(g) is a function Seq[V ] //Seq[U ] , which is defined as

JSequenceK(g) f n =

{
bot if f n = bot
up(g v) if f n = up v

The predicate lifting PredSequence(P ), for a parameter predicate P ⊆ U , is the greatest
predicate Q with the following property

Q(f) if and only if

{
JnextKU(f) = ⊥ or

JnextKU(f) = up(u, f ′) ∧ P (u) ∧ Q(f ′)

for all f ∈ Seq[U ]. It is easy to see that

PredSequence(P )(f) if and only if ∀n . f n = up(u) implies P u

The relation lifting RelSequence(R), for a parameter relation R ⊆ U×V , is the greatest
relation S ⊆ Seq[U ]× Seq[V ] such that

S(f, g) if and only if


JnextKU(f) = ⊥ ∧ JnextKV (g) = ⊥ or

JnextKU(f) = up(u, f ′) ∧ JnextKV (g) = up(v, g′)

∧ R(u, v) ∧ S(f ′, g′)

Again, for the concrete final model, it is easy to see that

RelSequence(R)(f, g) if and only if ∀n .
{
f n = g n = ⊥ or
f n = up(u) ∧ g n = up(v) ∧ R(u, v) �
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4.7.2. Iterated Specifications for Polynomial Functors

The general case of iterated specifications is not completely understood yet. For instance,
it is unclear how to get a functorial semantics of the queue specification from Exam-
ple 4.5.15. Further, the case where iterated specifications contain class specifications
with binary methods has not been investigated. Only the case of polynomial functors
has been investigated in (Hensel and Jacobs, 1997; Hensel, 1999; Rößiger, 2000b). The
result is the following theorem.

Theorem 4.7.4 Let 〈Si,Ωi,Mi〉i≤n be a finite list of triples, where each Si is either
a ground signature extension, a coalgebraic class specification, or an abstract data type
specification, and where the Ωi and the Mi are constructed as described on the preceding
pages. Assume that all the Si comply with the following conditions:

• If Si is a ground signature extension, then Si and its model are proper. Further,
all type constructors of Si are type constants (i.e., have arity zero).

• If Si is a coalgebraic class specification, then

– all its type parameters have strictly positive variance,

– all its method types are polynomial,

– it specifies final semantics via the keyword FINAL,

– if Si contains assertions then all Sj with j > i use the type constructor CSi

only with constant arguments,

– all method assertions and all constructor assertions of Si are invariant with
respect to behavioural equality,

– Si is consistent.

• If Si is an abstract data type specification, then all its type parameters have strictly
positive variance.

If these conditions hold then all Ωi and all Mi are proper with one exception: The mor-
phism component of some class specifications might be undefined. In particular, there
exist initial models for all data type specifications and final models for all class specifi-
cations among the Si.

Further the following two technical conditions are fulfilled for all type constructors
C: The interpretation of the relation lifting RelC is fibred (over the interpretation of C)
and it commutes with equality.

Before I can tackle the proof I have to generalise a few results. For the following two
lemmas let M be a proper model of a proper ground signature Ω such that all relation
liftings in M are fibred and commute with equality. By induction on the structure of
types as in Lemma 2.6.9 (2) and (7) we get the next lemma.

206



4.7. Iterated Specifications

Lemma 4.7.5 Let τ be a polynomial type over Ω. Then the relation lifting of τ is fibred
and commutes with equality. �

Now also the proof of Proposition 2.6.12 can be generalised:

Lemma 4.7.6 Let τ be a polynomial type over Ω. Then τ coalgebra morphisms are
functional bisimulations. �

Proof (of Theorem 4.7.4) The proof goes by induction on i and coalesces Proposi-
tion 4.5.18 of the present thesis with the results of Chapter 4 of (Hensel, 1999) and
Chapter 6 of (Rößiger, 2000b). For i = 0 the proposition holds trivially, because Ω0 is
the empty ground signature and M0 the empty model. In the induction step there are
three possibilities:

• If Si is a ground signature extension, then the assumptions on ground signatures
guarantees that Ωi and Mi are proper. The relation lifting of the type constants in
Si fulfils the technical conditions trivially, because the relation lifting for constants
takes no arguments.

• Let Si be a coalgebraic class specification over signature Σ with combined method
type τ . All type constructors in Ωi−1 are either constants, least fixed points (stem-
ming from abstract data type specifications), or greatest fixed points (stemming
from coalgebraic class specifications). Therefore the semantics of τ is a data func-
tor in the sense of Rößiger and Hensel. Rößiger’s Lemma 6.2.7 gives the final τ
coalgebra as a set of labelled elementary trees.

If Si does not contains any assertions then its semantics is fully defined (including
the morphism component).

In case Si does contain assertions then, by Lemma 4.7.6, τ coalgebra morphisms
preserve the validity of the method assertions of Si and we can construct the final
model of Si as in Proposition 4.5.18. This gives the semantics of any constant
instantiation of Si in subsequent specifications. The morphism component of the
semantics of Si is not used and stays undefined.

The proof of this case is finished with Hensel’s results: His Theorem 4.8 proves
the existence of predicate and relation lifting, Proposition 4.9 shows that relation
lifting is fibred, and Lemma 4.22 that it commutes with equality.

• Let Si be an algebraic class specification with combined constructor type σ. Again
the semantics of σ is a data functor and the initial σ algebra exists by Rößiger’s
Lemma 6.2.6. Then Hensel’s Theorem 4.8 shows that predicate and relation lifting
for Si exist, Proposition 4.9 shows that relation lifting is fibred, and by Lemma 4.18
it commutes with equality. �
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In this subsection I combined results from (Hensel and Jacobs, 1997) and (Rößiger,
2000b) to characterise the fragment of ccsl for which (at the time of writing) the
semantics is well defined. The ccsl compiler provides the -pedantic switch (see Sub-
section 4.9.9 on page 223) for checking whether a specification lies within the well defined
fragment of ccsl.

Note that even the simple queue specification from Figure 4.11 does not fulfil the
assumptions of the preceding theorem because it has a type parameter with mixed
variance. This shows that there is still a need for more general results on the existence
of initial algebras and final coalgebras.

4.7.3. Using CCSL consistently

The preceding theorem 4.7.4 proves that the semantics of ccsl is well defined for poly-
nomial functors and their iterations. As long as one stays in this fragment one can only
introduce inconsistencies by writing an inconsistent specification. Interesting examples
lead often beyond the assumptions of Theorem 4.7.4: Already the queue specification of
this chapter contains a contravariant type variable and does therefore not fit into the
preceding theorem.

To cope with the general situation, the ccsl compiler is very carefully constructed
such that a few guide lines suffice to ensure consistency. For instance, when the ccsl
compiler generates the relation lifting of a class specification it uses a greatest fixed point
construction in the target theorem prover. This way one has to prove in the theorem
prover that the greatest fixed point does indeed exists before one can use the relation
lifting. Further the compiler does only generate those items of the semantics that are well
defined. Assume for example a class specification S that depends on a class specification
S ′, where S ′ contains a type parameter with mixed variance. In this case the compiler
does not generate the definition of coalgebra morphism for the signature of S.

The only dangerous point is the semantics of the type constructors for coalgebraic
class specifications. It does not make sense to use Rößiger’s construction in conjunction
with Proposition 4.5.18 to built the final model of a class specification in the target
theorem prover. Rößiger’s construction is far too complicated for this purpose. Therefore,
for the semantics of class specifications, the compiler generates a new type and a few
axioms. This can lead to inconsistencies, if the class specification has no model (for loose
semantics) or if it does not have a final model (for final semantics).

Therefore the golden rule for using ccsl consistently is

If S is a class specification processed with loose semantics: Do not proceed
until you have constructed a model of S in the target theorem prover.

If S is processed with final semantics, then do not proceed until you have
constructed the final model of S.

If this does not give enough security, then one can use the compiler switch -pedantic.
It causes the compiler to accept only those source files that fulfil the assumptions of
Theorem 4.7.4 (see Subsection 4.9.9 for the user interface of the ccsl compiler).
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4.8. CCSL and Object Orientation

In this section I investigate the relation of ccsl to the concept object orientation.
Chapter 2 of (Meyer, 1997) lists 29 criteria of object orientation. Depending on personal
preferences and the interpretation of these criteria one can argue whether ccsl fulfils
more criteria than, for instance, Java. The main difference is that ccsl is a specification
language. So some of the criteria make no sense at all for ccsl. Consider for instance
dynamic binding (often called late binding). When a method is called for a specific object,
then the method body corresponding to the actual type of the object (in contrast to
the static type of the identifier that refers to the object) should be executed. Method
declarations in ccsl have no method bodies. Further it is unclear what execution should
mean for ccsl. So the term dynamic binding does not apply to ccsl (and not to
specification languages in general).

Based on this illustration I consider the question whether ccsl is object oriented
as irrelevant. The term object-orientation does apply to software construction systems,
it does not apply to a single specification language. So ccsl is not an object-oriented
specification language. However, I claim that ccsl is a specification language for object-
oriented programming. A ccsl specification is organised as a series of class and abstract
data type specifications. Each class specification contains a number of method dec-
larations, whose behaviour is specified together. This perfectly matches the view of
object-oriented programming, where software is organised in classes. However, object
orientation consists of more than just the concept of classes.

In the past ccsl has sometimes been criticised for the lack of a particular object-
oriented feature. It would indeed be possible to make ccsl more object-oriented in the
sense of providing additional syntax for a specific object-oriented feature and including
it into the semantics. However, even for key features of object orientation there is no
consensus among the object-oriented community on how to do it right. Witness for
this are programming languages in the field, for instance C++, Java and Eiffel, which
are quite different in their view on object orientation. An attempt to make ccsl more
object oriented would necessarily specialise ccsl from a general specification language
for object orientation to a specification language for a specific programming language.
While it is an interesting challenge in its own to design, for instance, a specification
language for Java, the aim of this work was to create a specification language that is
independent of a specific programming language. As a result syntax and semantic of
ccsl are relatively simple.

In this section I discuss some design choices that have been made for ccsl and
compare it with the choices of the programming languages ocaml, Eiffel, C++, and
Java. The information about these languages has been taken from (Leroy et al., 2001;
Meyer, 1992; Meyer, 1997; Stroustrup, 1997) and (Gosling et al., 1996), respectively.
This section is necessarily more informal in style. The arguments in favour of or against
a particular decision are often of similar strength, the decision depends then on personal
preferences.

The following subsection shed light on the relation of ccsl with inheritance (Sub-

209



4. The Specification Language CCSL

section 4.8.1), subtyping (Subsection 4.8.2), multiple inheritance (4.8.3), and overriding
and dynamic binding (4.8.4).

4.8.1. Inheritance

Inheritance allows one to derive an implementation for a class heir from a class parent
without actually copying the source code of parent. In this case the class heir inherits from
class parent. Equivalently one says that heir is a descendent of parent or that parent is an
ancestor of heir. Inheritance is a key concept of object orientation. For ccsl inheritance
is important in two ways. First, it would be nice if a specification for both classes heir
and parent has a similar structure. It should consist of a class specification SP for the
class parent and a class specification SH for the class heir such that SH is derived from
SP . Second, it is desirable that this derivation at the specification level does not involve
textual copying of SP .

The first point is an abstract property of the involved specifications, it is covered by
the notion of subspecification (Definition 4.5.16). The second point is a syntactic feature
of ccsl that is independent from the notion of coalgebraic specification. Let me discuss
these two points in order.

It is general consensus among the object-oriented programming languages that the
heir inherits all instance variables and methods from the parent. Constructors, which
are used to create and initialise new objects, are usually not inherited. The rationale
is that one cannot expect that a constructor of the parent correctly initialises the heir.
These remarks directly apply to Java and C++. In Eiffel constructors are called creation
features. Creation features are inherited as normal features by the heir (so they can only
be used to create new objects of the heir if they are marked as creation features again).
All these languages provide syntactic means to invoke a constructor of the parent in
a constructor of the heir. The programming language ocaml is a bit different. There
one can only specify initialisers, which are special expressions evaluated after object
creation. In ocaml inheritance propagates initialisers.

For ccsl I adopt the point of view that inheritance should not propagate construc-
tors. Therefore the definitions of subsignature and subspecification (compare Defini-
tions 4.4.3 and 4.5.16) neglect constructor declarations and creation conditions.

The concrete syntax of ccsl contains an inheritance clause with which it is possible
to build a subsignature hierarchy without copying. The syntax is as follows.

inheritsection ::= INHERIT FROM ancestor {| , ancestor |}
ancestor ::= identifier [ argumentlist ]

[ RENAMING renaming {| AND renaming |} ]

renaming ::= identifier AS identifier

An inheritance clause has the following effect: First the type parameters of the ances-
tor are instantiated with the provided type expressions. Then the instantiated attribute
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and method declarations are added (disjointly) to the current class together with all
method assertions. If an attribute or method identifier of a parent class occurs already
in the heir, then it is renamed automatically. The user can rename attributes and meth-
ods himself with RENAMING’s in order to prevent unintended name clashes. The ccsl
compiler takes care that, if a renaming occurs, the inherited method assertions refer to
the inherited methods.

4.8.2. Subtyping

A second key concept of object orientation is that one can pass an object o into an
environment which expects only a subset of the methods that are available for o. This
idea is formalised by enriching the type system with a subtype relation. Intuitively a type
σ is a subtype of τ (alternatively τ is a supertype of σ), denoted by σ ≤ τ , if it is safe
to pass an inhabitant of σ to a function that has domain τ . Type systems for object
orientation are usually equipped with a subtype relation, see for instance (Pierce and
Turner, 1994; Cardelli and Wegner, 1985; Abadi and Cardelli, 1996; Castagna, 1997)

A language has implicit subtyping if the programmer is not required to insert a
type conversion when he passes an object to an environment that expects a supertype.
The languages C++, Eiffel, and Java do have implicit subtyping. In ocaml the types
for objects are modelled with parametric polymorphism involving an anonymous type
variable (often called the row variable). One of the consequences is that in ocaml one
has to use explicit subtyping . This means that the programmer has to insert a type
conversion into the ocaml source code at each point where an object is passed into a
function that expects an object of a different class. One can argue that explicit subtyping
has not much to do with subtyping, because a type conversion that converts objects of
a subtype σ to a supertype τ can be seen as a function σ //τ , so that no subtype
relation is required at all. One can also consider implicit subtyping as an additional
feature that is provided by the compiler, which automatically inserts a type conversion
at every point where types do not match. Indeed, such behaviour is specified for Java
(compare §5 in (Gosling et al., 1996)).

ccsl has a semantics in set theory. There, types are represented by sets and implicit
subtyping is provided by the subset relation. However, the subset relation is far to
restrictive, for instance M × N 6⊆ M in general, so ccsl and its semantics cannot
provide implicit subtyping.

The subtype relation is often confused with the inheritance relation. In (Cook et al.,
1990) it is shown that both relations are independent (see also the discussion in Sec-
tion 3.1). The programming language ocaml adopts this point of view: It is an easy
exercise to write three independent ocaml programs, each containing two classes a and
b, that have the following properties. In the first program b inherits from a but a is a
subtype of b. In the second program b inherits from a and a and b are not related by
subtyping. Finally in the third program b is a subtype of a but neither a inherits from
b nor b inherits from a.

211



4. The Specification Language CCSL

In practice software is structured in an inheritance hierarchy and it is often desirable
to identify subtyping and inheritance as much as possible. Moreover, understanding a
subtype relation is a difficult challenge, whereas understanding an inheritance relation
is relatively simple. Therefore many languages identify subtyping and inheritance at the
price of loosing (static) type safety. Examples are C++, Java, and Eiffel.

In an object-oriented programming language a class usually gives rise to a type, the
type of objects of that class. As a consequence all objects that belong to one class have
an uniform structure. In ccsl there is the notion of class specifications and of models
of that class specification. One class specification can have different models. The state
space of two such models can have different structure. Consider for instance the model
of the queue signature in Example 4.4.6. There I used pairs of natural numbers and
functions as state space. There are models of this signature in which the state space is
a set of functions, in other models it is a set of lists. There is no uniform type for the
state space of all models of one class. So for a function that models explicit or implicit
subtyping it is not clear what codomain this function should have. For this reason it does
not make sense to require that ccsl models implicit or explicit subtyping. The user of
ccsl who constructs the models has the choice: He can build the models in a way such
that the state spaces are in a subset relation. Alternatively he can provide conversion
functions that model explicit subtyping.

Certain conversion functions are always provided through the structural properties
of coalgebraic class specifications (Jacobs, 1996a; Jacobs, 1996b; Poll, 2001). Consider a
model M = 〈X, c, a〉 of a specification S. The subsignature projection πΣ′ that belongs
to a subspecification S ′ ≤ S yields a coalgebra πΣ′ ◦ c that fulfils the assertions of S ′,
so in a sense, it converts objects that fulfil the specification S into objects that fulfil the
method assertions of S ′. Note that it might be impossible to find an algebra a′ such that
〈X, πΣ′ ◦ c, a′〉 is a model of S ′. This happens because the definition of subspecification
and of subsignature put no constraints on constructors and creation conditions. If one
uses final semantics, then coreduceS′(πΣ′ ◦ c) maps objects in X to the canonical model
of S ′.

4.8.3. Multiple Inheritance

The programming languages Eiffel, C++, and ocaml allow multiple inheritance. And
so does ccsl. Multiple inheritance means that a given class can inherit from multiple
ancestors. In particular it is possible that a given ancestor is inherited twice or more
times via different paths. This is called repeated inheritance. The question is, if an
object of the heir should contain the instance variables (and the methods) of a repeated
ancestor once (the repeated ancestor is shared) or several times (the repeated ancestor
is not shared). There is no general answer, because there exist examples where sharing
has advantages over non-sharing and vice versa. In ocaml common ancestors are never
shared (the last copy hides and overrides all previous ones). In C++ the user has the
choice via declaring the ancestor class as virtual or not. Eiffel solves the problem via
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its resolving of name clashes: Features that have the same name are shared (if certain
consistency requirements are met), features that have different names are not shared.
Java has the simplest answer to this question: it supports only single inheritance.

In ccsl the question is a bit more difficult, because usually the ancestors are para-
metric in some type variables. So in order to decide whether a given class is inherited
twice it is necessary to have an equality relation on types. On the one hand, if ccsl
would allow sharing of common ancestors one would need an appropriate equality rela-
tion on types. Besides that additional syntax would be necessary to let the user decide
whether he or she wants sharing in a particular case or not. On the other hand even if
in ccsl repeatedly inherited classes are never shared, an user can easily enforce sharing
by an assertion

〈path to first copy〉(x) = 〈path to second copy〉(x)

where 〈path to . . . 〉 is a suitable combination of subsignature projections.

Under these considerations it seems best to opt for the second alternative: If a class
specification is repeatedly inherited in ccsl its method declarations and assertions are
included multiple times. Name clashes (one identifier refers ambiguously to more than
one declaration) cannot occur, because the semantics of the inherit section is defined
via disjoint union. The ccsl compiler automatically renames declarations if otherwise
a name clash would occur.

4.8.4. Overriding and Dynamic Binding

Overriding describes the technique to give a new definition for a method that is inherited
from an ancestor class. In (Meyer, 1997) Meyer distinguishes dynamic and static binding .
The term late binding is a synonym for dynamic binding.

Dynamic binding means that for overridden methods the executed method body is
chosen according to the dynamic type of the object. For static binding the type of the
variable that holds the object determines the method body that will be executed. Eiffel,
Java, and ocaml offer only dynamic binding. In C++ the user has the choice: dynamic
binding takes effect if the method is declared as virtual in the parent class and if the
object is handled via a reference or a pointer. Otherwise static binding is used.

The first (and more important) question is, how one can model programs in ccsl
that exploit dynamic binding. And, secondly, although Meyer considers static binding as
“gravest possible crime in object-oriented technology”26 it is interesting if one can model
static binding at the same time. The general answer is that ccsl can model both static
and dynamic binding in different ways. In the following I will show several examples to
demonstrate how this can be done. All these examples are the result of a long discussion
with Bart Jacobs about static and dynamic binding in ccsl.

26(Meyer, 1992), page 345
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Consider the following ocaml fragment.

class parent = object
method m = 0

end

class heir = object
inherit parent

method m = 1

end

Class parent contains one method m that returns the integer 0 on every invocation.
Class heir inherits from parent and overrides m to return 1. Consider now the method
invocation o#m where o is a variable of type parent.27 What can we derive about the
result of o#m? Certainly not that the result is 0, because in a run of the program an
instance of heir could have been assigned to o. Assuming that there are no other subtypes
of class heir we can derive that the result is less than 2. To be more precise we need
information about the dynamic type of the object that the variable o holds.

How can a specification for the classes parent and heir look like? It should be possible
to reason not only about complete programs but also about program fragments. Thus it
would be inadequate to assume that one can derive the dynamic type of every object for
every method call in the verification environment. Let Sparent denote the specification for
class parent. There are at least two points of view: First, the monotone approach considers
the specification Sparent as a specification of the objects of parent and all its descendents.
Second, in the nonmonotone approach Sparent is a specification for the objects of class
parent only. Objects of heir do not need to fulfil the method assertions of Sparent.

The monotone approach follows Liskov’s substitution principle (Liskov, 1988), which
(roughly) says that any context that accepts objects of parent should also accept objects
of heir. The monotone approach is further consistent with Eiffel. There the class invari-
ants, the pre- and the postconditions are a specific conjunction of the corresponding
properties of the ancestor classes.28 The nonmonotone approach takes the point of view
of a programmer who expects an assertion o.m = 0 in Sparent because this fits best with
the source code of parent. Both approaches are consistent with the semantics of ccsl as
described so far. However to force either one, one had to introduce technical complica-
tions into the semantics of ccsl. At the point of writing it is not clear if the monotone

27ocaml uses o#m instead of o.m to syntactically distinguish method invocation from record selection.
28In Eiffel classes can contain logical properties formulated in a special propositional logic. Via a

compiler switch the user can enable their evaluation at runtime. If one of the properties is violated
it yields an exception (similar to the assert directive in C++). One can specify class invariants
(properties that are checked whenever the control flow enters or leaves a feature of that class),
preconditions (properties about the arguments of a feature), and postconditions (properties about
the return value of a feature).
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Begin SParent : ClassSpec
Method

m : Self −> nat;
Assertion Selfvar x : Self

p1 : x.m ≤ 1;
End SParent

Begin SHeir : Classspec
Inherit From SParent
Assertion Selfvar x : Self

h1 : x.m = 1;
End SHeir

Figure 4.17.: The monotone approach to model dynamic binding.

approach is superior to the nonmonotone or vice versa. It seems that the decision, which
approach to prefer, depends very much on the concrete verification problem. Moreover
both approaches are equivalent in the sense that if the semantics of ccsl would be mono-
tone, then it would be possible to write specification that mimic nonmonotone semantics
and vice versa. As a conclusion from these various considerations it seems best to leave
the semantics of ccsl as simple as possible and let the user decide. In the following I
describe how one can model the monotone and the nonmonotone style of specification
in ccsl.

In the monotone style one adds assertions to further restrict the inherited methods.
The resulting specifications are in Figure 4.17. The specifications SParent and SHeir in
Figure 4.17 are both consistent. The only problem that remains is that, in case we know
that an object of type parent is assigned to a variable o then, we cannot derive that
o#m = 0. To fix this it is necessary to incorporate the notion of dynamic type into
the specification. The simplest way to do this is to assume that the ground signature
contains a type of sufficient cardinality that models the dynamic types of the objects.
For simplicity I use the natural numbers here, and let 0 be the dynamic type of parent
and 1 be the dynamic type of heir. The modified specification that takes dynamic type
information into account is in Figure 4.18.

Now we can derive o#m = 0 provided we have information about the dynamic type of
o. The subsignature projection is linked to dynamic binding because it does not change
the value of dynamic type. In terms of Java it is a widening reference conversion (§5.1.4
in (Gosling et al., 1996)).

The specification in Figure 4.18 does not model static binding. One can easily fix this
by adding a method declaration static parent : Self ⇒ Self with an additional assertion
dynamic type(static parent(x)) = 0, where x is a variable of type Self.
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Begin SParent : ClassSpec
Method

dynamic type : Self −> nat;
m : Self −> nat;

Assertion Selfvar x : Self
p1 : x.m ≤ 1;
p2 : dynamic type(x) = 0 Implies x.m = 0;

Constructor
new parent : Self;

Creation
p3 : dynamic type(new parent) = 0

End SParent

Begin SHeir : ClassSpec
Inherit From SParent
Assertion Selfvar x : Self

h1 : dynamic type(x) = 1 Implies x.m = 1;

Constructor
new heir : Self;

Creation
h2 : dynamic type(new heir) = 1

End SHeir

Figure 4.18.: The monotone approach to model dynamic binding taking dynamic type
information into account.

The modelling of the nonmonotone approach follows ideas from the Java branch in
the loop project, see (Huisman and Jacobs, 2000). An example specification for the
nonmonotone approach is in Figure 4.19. Note that the specification SHeir is consistent
because during inheritance the method declaration m of SParent is renamed, say to
parent m, and the inherited assertion p1 refers to parent m. The important thing to note
is that now the subsignature projection corresponds to static binding. The problem in
this approach lies in the modelling of dynamic binding.

Let me fix some notation to explain how this works. Let SP = 〈ΣP , {p1}, ∅〉 be the
coalgebraic specification for SParent and let SH = 〈ΣH , {p′1, h1}, ∅〉 be the specification
for SHeir. A model for SH consists of a state space X together with a coalgebra c :
X //N×N where π1 ◦ c interprets the method parent m and π2 ◦ c interprets m.
The subsignature projection maps c to π1 ◦ c, which is a model for SP . The trick in
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Begin SParent : ClassSpec
Method

m : Self −> nat;
Assertion Selfvar x : Self

p1 : x.m = 0;
End SParent

Begin SHeir : ClassSpec
Inherit From SParent
Method

m : Self −> nat;
Assertion Selfvar x : Self

h1 : x.m = 1;
End SHeir

Figure 4.19.: Example for the nonmonotone approach to model dynamic binding.

getting dynamic binding to work lays in a suitable rearrangement of the methods in
the coalgebra. In this simple example we see that π2 ◦ c is a (signature) model for ΣP

in which the interpretation of m provably equals 1. Note that π2 ◦ c does not fulfil
the assertion p1. With sophisticated rearrangements one can model upcasts that bind
some methods statically and some dynamically. This can be used to model C++, where
dynamic binding applies only to methods that are declared as virtual. In (Huisman and
Jacobs, 2000) this technique is used to model the widening reference conversion of Java.
The special feature of Java is that this conversion uses dynamic binding for the methods
and static binding for the fields (instance variables).

4.9. Miscellaneous

This section explains those parts of ccsl that do not fit into one of the previous sec-
tions. The first subsection describes the structure of input files and what the compiler
generates. The following subsections are on the include directive, on lifting requests,
importings, infix operators, (qualified) identifiers, anonymous ground signatures, the
prelude, the user interface of the ccsl compiler, and the implementation and internal
structure of the current implementation.

4.9.1. Input and Output Files

A complete ccsl specification consists of a sequence of ground signature extensions, class
specifications, and abstract data type specifications. Such a sequence can be spread over
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several files by using the include directive (see the following Subsection). In the following
grammar rules the meta symbol file stands for a complete ccsl specification (and not
for the contents of exactly one file).

file ::= {| declaration |} EOF

declaration ::= classspec
| adtspec
| groundsignature
| typedef
| groundtermdef

The meta symbol typedef is also allowed outside of ground signatures. Together with
the meta symbol groundtermdef it provides a lightweight syntax for ground signature
extensions, see 4.9.7 below.

The theorem provers isabelle and pvs organise their input material in theories.
Each theory can depend on a number of other theories and contains axioms, type and
constant declarations, and proof goals. For pvs it is important that all the material in
one theory depends on all type parameters of the theory. Therefore pvs theories tend to
be rather short. For pvs one file can contain several theories. In isabelle there is no
problem with the type parameters. However, an isabelle file might contain only one
theory.

In this setting the ccsl compiler behaves as follows. For each specification or ground
signature 〈spec〉 in the input file it generates a number of different internal theories.
What theories are precisely generated depends on the properties of the input and on
the target theorem prover. For pvs the compiler dumps one internal theory into one
pvs theory. All theories that belong to the specification 〈spec〉 are put into one file
〈spec〉 basic.pvs. For isabelle the compiler combines all internal theories into one
isabelle theory 〈spec〉 basic and prints it into the file 〈spec〉 basic.thy.

If a class specification contains a theorem section then the formulas there are trans-
lated into a theory 〈spec〉Theorem and written into a separate file.

For a ground signature 〈gsig〉 that defines types or constants version 2.2 of the
ccsl compiler generates one theory 〈gsig〉Definition and possibly several theories
〈gsig〉Definitionn, where n stands for a generated sequence number. The reason for
separating the material of one ground signature into several theories lays in the different
treatment of type parameters in pvs and ccsl. The compiler generates no output for
ground signatures that contain only declarations (i.e., no defining equations).

For an abstract data type specification 〈adt〉 the ccsl compiler can generate the
following theories.
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name of theory contents

〈adt〉 data type declaration
〈adt〉Util reduce, accessors, recognisers
〈adt〉Map map combinator
〈adt〉Every (full) predicate lifting
〈adt〉RelLift (full) relation lifting

The theory 〈adt〉Util is only generated for isabelle. The theories for the map
combinator and for the liftings are generated if these notions exist for the adt in question
and if the target theorem prover does not provide them.

The theories that can be generated for a class specification are displayed in the
Tables 4.20 and 4.21. Again, these theories are only generated, if there contents is defined
for the actual class specification. For instance for class specification for which loose
semantics is requested the theories for the final model and for the map combinator are
not generated.

The ccsl compiler generates a fair amount of theorems. Unfortunately, it generates
only very few proofs. For pvs this is no problem. For isabelle the compiler generates
sorry29 proofs.

4.9.2. Include Directive

The ccsl compiler supports a C-preprocessor like include directive:

include ::= #include "string"

The string must be the name of a file, which is literally substituted for the include
directive. The include directive is handled by the lexer, it can appear at any place in the
input.

4.9.3. Lifting Requests

During type checking the ccsl compiler determines all uses of behavioural equality,
derives the types and generates appropriate liftings. However, sometimes an user wishes
to use behavioural equality for types that do not occur in the specification. The ccsl
compiler supports these users via lifting requests. A lifting request consists of a name
and a type expression. The compiler generates the relation lifting for this type and adds
a declaration with the given name in the generated files.

requestsection ::= REQUEST request {| ; request |}
request ::= identifier : type

29The Isar command sorry does a fake proof pretending to solve the pending proof goal without further
ado (Wenzel, 2002).

219



4. The Specification Language CCSL

name of theory contents

〈class〉Interface signature declaration
〈class〉Method Id tags for method wise modal

operators
〈class〉MethodPredicateLifting (method wise) predicate lifting,

method-wise invariants
〈class〉MethodInvariantRewrite utility lemmas for invariants
〈class〉MethodInvariantInherit link methodwise invariants with

super classes
〈class〉Box (method wise) modal operators
〈class〉BoxInherit link modal operators with super

classes
〈class〉Bisimilarity relation lifting and bisimulations
〈class〉BisimilarityRewrite utility lemmas for bisimulations
〈class〉PublicBisimilarityRewrite utility lemmas for bisimulations

with respect to the public
subsignature

〈class〉BisimilarityEquivalence bisimulation on one model,
bisimilarity

〈class〉BisimilarityEqRewrite utility lemmas for bisimilarity
〈class〉PublicBisimilarityEqRewrite utility lemmas for bisimilarity with

respect to the public subsignature
〈class〉ReqObsEq additional liftings
〈class〉Morphism definition of 〈class〉–coalgebra

morphisms
〈class〉MorphismRewrite utility lemmas for morphisms
〈class〉Semantics semantics of the specification
〈class〉Basic utility lemmas for assertions and

creation conditions
〈class〉FullInvariant full predicate lifting and every

combinator
〈class〉FullBisimulation full relation lifting and relevery

combinator
〈class〉Finality properties of the final

〈class〉–coalgebra, coreduce
〈class〉FinalityBisim Bisimilarity on the final model
〈class〉Final axiomatic final model
〈class〉FinalProp axiom for final model

Table 4.20.: Generated theories for a class specification 〈class〉, Part I
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name of theory contents

〈class〉MapStruct coalgebra structure for map
combinator

〈class〉Map map combinator
〈class〉Loose axiomatic loose model
〈class〉 top level import theory for 〈class〉
〈class〉Theorem translated theorem section

Table 4.21.: Generated theories for a class specification 〈class〉, Part II

4.9.4. Importings

In pvs and in isabelle there must be a strict hierarchy between all theories. One can
only use the identifiers that are declared in the current theory or in one of the theories
on which the current theory depends.

Therefore it is necessary that the ccsl compiler generates the right dependencies be-
tween the theories in its generated output. During parsing the ccsl compiler collects all
type constructors that are used in each specification and generates the right dependen-
cies. For ground signatures that declare nonstandard material it is necessary to inform
the ccsl compiler where the material in the ground signature is defined. For special
applications it is sometimes necessary to adapt the automatically inferred dependency
relation. All this is done via the importing clause (in pvs the dependency between theo-
ries is given by importing statements). Importings can occur at the beginning of ground
signatures or class specifications, or in a section for assertions or creation conditions.

importing ::= IMPORTING identifier [ argumentlist ]

For pvs it is sometimes preferable to instantiate parametric theories in importing
statements. Therefore it is possible to provide an argument list in the ccsl importing
clause. For isabelle the arguments are suppressed.

4.9.5. Infix Operators

ccsl permits the declaration of infix operators in ground signatures to allow expressions
like 3 + 4 in assertions. The infix operators of ccsl are very similar to the ones of
ocaml (Leroy et al., 2001) and use the same implementation technique. Infix operators
can be several characters long. They are sequences of the following characters

! $ & * + - . / \ : < = > ? @ ^ | ~ #

where the first character is one of

$ & * + - / \ < = > @ ^ | ~ #
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Infix operators are grouped into precedence levels according to their first characters.
Associativity is fixed and depends also on the first characters. Operators starting with
** have the highest precedence. These operators are right associative. On the next
precedence level are the operators which have *, / or \ as first character, followed by
those with + or -, followed by the operators starting with @, ^, or #. All these operators
are left associative. On the least precedence level are the operators starting with =, ~,
<, >, |, &, or $. They are non-associative.

Infix operators must be declared as functions taking two arguments, so their type
must have a structure either like (τ × σ) ⇒ ρ or like τ ⇒ σ ⇒ ρ. If an infix operator
is surrounded by a pair of parenthesis it becomes a (prefix) function symbol. In the
declaration in the ground signature the parenthesis are also required.

Two infix operators are predefined: = for equality and ∼ for behavioural equality.

4.9.6. Identifiers and Qualified Identifiers

Identifiers in ccsl are sequences of letters, digits, the underscore, and the question mark.
Identifiers must begin with a letter. The list of reserved words is in the Appendix B on
page 284.

Let me use the term specification in this subsection to denote a class specification, a
ground signature, or an abstract data type specification that occurs in the ccsl input.
Any specification defines certain items for the specifications that follow, as explained
in Section 4.7. One can use a qualified identifier to refer to one of these items, even
if the identifier is hidden by another declaration. Qualified identifiers can occur at the
expression level in assertions (denoting constants or functions) or in type expressions
(denoting types from a ground signature). Their syntax is as follows.

qualifiedid ::= idorinfix
| identifier [ argumentlist ] :: idorinfix

idorinfix ::= ( infix operator )

| identifier

The meta symbol idorinfix (whose definition is repeated here for convenience) stands
for an unqualified identifier, which may be an infix operator in parenthesis. A qualified
identifier consists of a specification identifier, an optional argument list, and an unqual-
ified identifier. If the specification declares type parameters the argument list must be
present.

4.9.7. Anonymous Ground Signatures

It is possible to define or declare type constructors and constants outside of ground
signatures with the keywords TYPE and CONSTANT. The concrete syntax is the same as
inside ground signatures. For convenience I repeat the relevant meta symbols from the
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grammar:

typedef ::= TYPE identifier [ parameterlist ] [ = type ]

groundtermdef ::= CONSTANT termdef [ ; ]

termdef ::= idorinfix [ parameterlist ] : type [ formula ]

The ccsl compiler combines any sequence of such declarations into an anonymous
ground signature.

4.9.8. The Prelude

Before processing the actual input file the ccsl compiler parses a string that is hard
wired into the compiler: the CCSL prelude. The prelude extends the ground signature
to contain some basic types and constants. The prelude of the compiler version 2.2 is
displayed in Figure 4.22. The ground signatures EmptySig and EmptyFunSig belong only
to the prelude, if the target theorem prover is pvs. For isabelle the data type of lists
has constructors Nil and Cons to match isabelle’s definition. The compiler is clever
enough to avoid the repetition of the list data type in the target theorem prover.

4.9.9. User Interface

The ccsl compiler is a command line tool in the Unix tradition. Besides command line
switches it expects its source files on the command line and outputs into files in the
current directory (unless option -d is present). Here is a selection of the command line
switches for version 2.2 (for a complete listing see the reference manual (Tews, 2002a)
or the manual page).

-fixedpointlib path Set the location of the pvs fixed point library. The path of
the fixed point library appears in the generated output. It must point to the
correct location, otherwise type checking in pvs fails. The default path is set
during installation.

-d dir Place all generated files in directory dir

-pvs Set the target theorem prover to pvs. This is the default.

-isa Set the target theorem prover to isabelle/hol in the syntax of new style Isar
theories (Wenzel, 2002). Of a sequence of -pvs and -isa options the last one takes
effect.

-nattype type Set the type name of natural numbers to type. Defaults to nat.
More precisely, the type checker uses type type for all natural number constants
(consisting only of digits) in the source. This option is necessary to prevent type
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Begin EmptySig : GroundSignature
Importing EmptyTypeDef
Type EmptyType

End EmptySig

Begin EmptyFunSig [A : Type]: GroundSignature
Importing EmptyFun[A]
Constant

empty fun : [EmptyType −> A];
End EmptyFunSig

Begin list[ X : Type ] : Adt
Constructor

null : Carrier;
cons( car, cdr ) : [X, Carrier] −> Carrier

End list

Begin Lift[ X : Type ] : Adt
Constructor

bot : Carrier;
up( down ) : X −> Carrier

End Lift

Begin Coproduct[ X : Type, Y : Type ] : Adt
Constructor

in1(out1) : X −> Carrier;
in2(out2) : Y −> Carrier;

End Coproduct

Begin Unit : Adt
Constructor

unit : Carrier;
End Unit

Figure 4.22.: The ccsl prelude
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checking errors if you use natural number constants in combination with a type
different from nat (for instance int).

Note that type must be a valid type at each occurrence of a natural number
constant in the source. So you probably need to add a ground type declaration for
type at the start of the specification.

-batch Generate a batch processing file. The precise behaviour depends on the output
mode. For pvs the compiler generates a file pvs-batch.el containing Emacs lisp code.
For isabelle the file is called ROOT.ML and contains SML code.

-class spec Only generate output for specification spec. Repeat this option to get
output for several classes.

-dependent-assertions Normally the semantics of an assertion is a predicate on
the state space that is independent from all other assertions. With this option
each assertions has the preceding assertion as assumption. This does not change
the semantics of a class specification. However, it makes it possible to discharge
type-check conditions (TCC’s) with the help of previous assertions.

-pedantic Enforce all assumptions of Theorem 4.7.4 except the consistency require-
ment for class specifications. To ensure invariance with respect to behavioural
equality the compiler performs a syntactic check according to the Propositions 4.5.6
and 4.5.11. This check is relaxed in the following two cases:

• Polymorphic constants are recognised as behaviourally invariant if they are
instantiated with a constant type.

• Constructors of a class specification are allowed in the creation assertions of
that class specification. This rests on the construction in the proof of Propo-
sition 4.5.18.

-expert Turn on expert mode. This turns a number of errors into warnings. As a
result the compiler might generate inconsistent output.

-no-opt Turn off formula optimisation. Normally the ccsl compiler performs several
optimisations before printing formulae and expressions. (The compiler uses simple
equivalences for optimisation like > ∧ p = p but assumes also that all ground
signature extensions are proper.)

--help Print usage information.

-v Verbose. Print some messages about compilation progress.
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4.9.10. Implementation

The ccsl compiler is implemented in the programming language ocaml (Leroy et al.,
2001) using standard compiler construction techniques (see for instance (Aho et al.,
1986)). It is organised in several passes. Version 2.2 consists of about 40.000 lines in
about 100 files. ocaml is a strongly typed functional programming languages similar to
SML (Milner et al., 1991). It contains extensions for an imperative programming style
(references, while loops) and also for an object-oriented style.

ocaml was chosen for the following reasons: The transformation of ccsl into higher-
order logic requires a lot of symbolic manipulations. This can most easily be programmed
with abstract data types and pattern matching. ocaml integrates well with a standard
Unix environment and with Emacs. The ocaml distribution contains, besides the com-
piler, ocaml versions of Lex and Yacc, the replay debugger that allows one to run
programs backwards, and an extensive library. The compiler itself is small and produces
fast code. One of the disadvantages of ocaml is that the object-oriented constructs
integrate only purely with the functional part of the programming language. It is for
instance not possible to define a set of mutually recursive types such that some of the
types are classes and the other are abstract data types. To define such a set of types one
has to use the special construction of object types, which makes the whole code very
complex. A second problem with ocaml is that it does not allow one to specialise the
result type of methods during inheritance.

Some of the intermediate data structures of the ccsl compiler are defined as classes
and some as variant types. The three important classes are called iface, member, and
theory body. The internal representations of abstract data type specifications, class
specifications, and ground signature extensions are derived from the class iface by
inheritance. The classes for attributes, methods, constructors, and ground signature
constants are derived from the class member. The class theory body is the data structure
to capture the output that the ccsl compiler generates. There is one specific class that
inherits from theory body for every theory in the output.

The variant types formalise the internal representation of types, formulae and expres-
sions.30 All these types are mutually dependent, for instance formulae are expressions (of
boolean type), expressions contain types, type constructors that occur in types can stem
from class specifications, and, finally, a class specification contains formulae. This depen-
dency suggests to define all involved types in one mutual recursion. However this is not
feasible for several reasons. The most important is the absence of method specialisation:
The class iface contains a method get members that returns a list of member’s. Using
inheritance one wants to define the class ccsl iface that overrides get methods such
that it returns now a list of ccsl member’s. However, the ocaml type checker requires
that the overriding method has the same type as the overridden method.

One solution to this problem (which has been adopted in the ccsl compiler) is to

30Although higher-order logic does not distinguish between formulae and expression, it is conceptually
easier to use different types for formulae and expressions internally.
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write a class pre iface that is polymorphic in a type variable α (possibly constraining α
to be a subtype of member). The method get methods in pre iface returns a list of α’s.
The desired iface class can be obtained by instantiating α with member. By inheritance
one can derive a polymorphic class ccsl pre iface. The class ccsl iface is obtained
from ccsl pre iface by instantiating it with ccsl member. Now the method get members
in ccsl iface has the desired type. Note that in ocaml the class ccsl iface is not a
subtype of class iface.

For the ccsl compiler we introduced several type parameters to break the (formal)
dependency between the type definitions. All the variant types are polymorphic in two
type variables, one is instantiated with the internal type for class specifications, the other
is instantiated with the internal representation of methods (and attributes). The class
pre iface takes three type parameters. The first will be instantiated with an instance of
class member, the second with an instance of theory body, and the third type variable is
instantiated with the class iface itself. For instance the file ccsl classtype.ml contains
the following code.

class type ccsl iface type
= [ccsl member type,

(ccsl iface type, ccsl member type) ccsl pre theory body type,
ccsl iface type] ccsl pre iface type

and ccsl member type =
[ccsl iface type, ccsl member type] ccsl pre member type

This code fragment defines suitable instantiations of iface and member as abbrevi-
ations ccsl iface type and ccsl member type, respectively. The instantiations are in
brackets. The second argument for ccsl pre iface type must be instantiated as well.
For some obscure reason one has to group these instantiations with parenthesis (instead
of brackets). Note that both abbreviations are (mutually) recursive. This is no problem
in ocaml.

The ccsl compiler consists of the following passes

Lexing & Parsing The lexer and the parser are generated by ocamllex and ocamlyacc,
respectively. Theses are the ocaml variants of lex and yacc. Keywords are recog-
nised with a hash table that sits in between the lexerer and the parser. The contents
of this keyword hash table is generated from the yacc source by a home grown
tool, which has been inspired by gperf (Schmidt, 1990).

The parser resolves all type identifiers. Identifiers for variables, methods and con-
structors are resolved later.

The result of the parser is an abstract syntax tree. All following passes work on this
syntax tree and add information by destructive updates. This syntax tree contains
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information about source code locations such that later passes can generate exact
error messages.

Update Methods Scan class signatures for attributes and generate update methods.

Inheritance Resolve inheritance in class specifications. Lookup ancestors, instantiate
them, perform method renaming, check for name clashes, and update the symbol
table of the heir. When this pass is completed all inherited methods can be found
via the symbol table of the heir.

Update Assertions Generate update assertions. Take inherited attributes and inherited
update methods into account.

Variance Compute variances for all type parameters. Classify interface functors for data
types and classes according to the hierarchy of functors in this thesis.

Features Depending on the type constructors (and their instantiation) that are used
in class and data type signatures this pass determines which parts of the general
semantics described in Section 4.7 are defined for every specification.

Special Class Members Definition of the special class member coreduce, and the rec-
ognizers for invariants (〈class〉 class invariant?),
bisimulations (〈class〉 class bisimulation?),
and morphisms (〈class〉 class morphism?).

Resolution Resolution of variables, methods and constructors.

Type Checking Type check all assertions. The type checker is based on unification of
types. It temporarily inserts (internal) free type variables into the abstract syntax
tree. Their solutions are determined with unification.

Theory Generation Generate all theories in an internal version of higher-order logic.

Pretty Printing Dump the generated theories in the syntax of the target theorem
prover.

This description shows clearly that the design of the ccsl compiler is not optimised
for efficiency. However, efficiency has never been a problem: An input file of a few hundred
lines is processed in less than a second.

4.10. Applications of CCSL

ccsl has been used in the past in a number of larger and smaller case studies. A major
point in these case studies has been the construction of coalgebraic refinements. The
first subsection describes the notion of coalgebraic refinement that is used in the loop
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project at the moment and how one can prove such refinements with ccsl. In the
second subsection I review some ccsl case studies. The third subsection applies ccsl
to an UML/OCL example.

4.10.1. Proving Coalgebraic Refinement

Refinement is a relation between specifications. It links a specification that is considered
to be more ‘abstract’ with a specification that is considered to be more ‘concrete’. The
intuition is as follows: A concrete specification SC refines an abstract specification SA,
if all models of SC can be transferred into models of SA. Refinement could also be
paraphrased as relative model construction: If SC refines SA then one can build a model of
SA by assuming an arbitrary model of SC . Typically refinement involves a translation of
signatures: The operations of the signature of SA must be expressed with the operations
available in SC .

Refinement is an important notion in software verification. Instead of relating the
implementation directly with the specification one often uses several refinement steps,
as depicted below.

��������� ���������	�
�
��
� �
� �

�����������	�
�
��
� �
� �

���
�����
� �
� ��
��� �

�
� 
�!

As the size of the boxes indicates there is a chain of increasingly complex and increasingly
more concrete specifications. The last specification in the chain, Spec III, sufficiently
resembles the implementation. So it is feasible to prove that the implementation is a
model of Spec III. The specifications are related by refinements. If the chosen notion of
refinement is compositional (i.e., if the refinement relation is transitive) it follows that
the implementation is also a model of the specification Spec I.

(Wirsing, 1990) describes refinement in the context of algebraic specification, but
see also (Back and von Wright, 1998) for program refinement. For coalgebraic specifica-
tion refinement was first studied in (Jacobs, 1997a) and in (Jacobs, 1997b). Poll defines
in (Poll, 2001) a notion of behavioural subtyping between coalgebras and discusses its
relation with coalgebraic refinement. The experience with constructing refinements of
ccsl specifications in the theorem prover pvs showed that Jacobs’ original notion of
coalgebraic refinement is not general enough. A number of generalisations finally lead to
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two notions of refinement: assertional refinement and behavioural refinement. Both no-
tions and the need for the generalisations are discussed in detail in the joint work (Jacobs
and Tews, 2001).

Assertional refinement requires that the assertions of the abstract specification should
hold for each translated model of the concrete specification. This implies that for as-
sertional refinement the translation of signatures must cover the complete signature of
the abstract specification (because every method of the abstract signature can occur
in the assertions). Sometimes this complete coverage is inappropriate. For instance, if
the abstract signature contains private methods then one might want to construct a
refinement for the public methods only.

In behavioural refinement one requires that each translated model of the concrete
specification should be behaviourally equal to some abstract model. The behavioural
equality can be taken with respect to a subsignature of the abstract specification, for
instance to hide the private methods.

In the following I present the definitions from (Jacobs and Tews, 2001) in the for-
mal context of this thesis and explain how one can prove refinements of ccsl class
specifications with the theorem prover pvs. Recall from the Definitions 4.4.1 and 4.5.14
(on page 150 and 178, respectively) that a class specification S is a triple 〈Σ,AM ,AC〉,
where Σ = 〈ΣM ,ΣC〉 is the signature, consisting of the method declarations ΣM and
the constructor declarations ΣC , and AM and AC are sets of method and constructor
assertions, respectively.

Definition 4.10.1 (Assertional Refinement) Let SC be a concrete coalgebraic class
specification over the signature ΣC with n type parameters and let SA be an abstract
coalgebraic class specification over the signature ΣA with m type parameters α1, . . . , αm.

1. A parameter translation from ΣA to ΣC is a n-tuple of types (τ1, . . . , τn) such that
every τi contains only the type variables α1, . . . , αn, that is

α1 : Type, . . . , αm : Type ` τi : Type

can be derived.

2. Let (τ1, . . . , τn) be a parameter translation from ΣA to ΣC . A fixed interpre-
tation U1, . . . , Um of the type parameters α1, . . . , αm induces an interpretation
JτiKU1,...,Um of the types τi. A translation map (from ΣC to ΣA with respect to
(τ1, . . . , τn)) is a family of mappings (φU1,...,Um) such that for an interpretation
U1, . . . , Um of the type parameters α1, . . . , αm the map φU1,...,Um assigns to every
model M = 〈X, c, a〉Jτ1K,...,JτmK of the specification SC a signature model φ(M) =
〈X ′, c′, a′〉U1,...,Um of ΣA such that X ′ ⊆ X.

3. A translation map φ is an assertional refinement, if φ(M) is a model of SA for all
models M of SC .
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The notion of parameter translation is not present in (Jacobs and Tews, 2001), there
we discuss only refinements between class specification without type parameters. The
parameter translation deals with the (rare) situation where the number of type param-
eters of the abstract and the concrete specification differ. In most cases the parameter
translation is the identity, that is τi = αi.

The main restriction in the preceding definition of assertional refinement is that the
state space of the translated model φ(M) is a subset of the state space X of the original
model. The requirement that X ′ must only be a subset of X accounts for the fact that
in a refinement one might want to exclude certain (unreachable) states from M .

Definition 4.10.2 (Behavioural Refinement)

1. Let S be a coalgebraic class specification over signature Σ = 〈ΣM ,ΣC〉 and let
Σ′ = 〈Σ′

M ,Σ
′
C〉 be a subsignature of Σ with the same set of constructors: ΣC = Σ′

C .
A behavioural model (of S with respect to Σ′) is a model 〈Y, d, b〉 of Σ′ such that
there exists a model 〈X, c, a〉 of S with Rel(JσΣK)(c↔ d)(a, b), where σΣ is the
combined constructor type of Σ (see page 151).

2. Assume a concrete specification, consisting of a coalgebraic class specification SC

over the signature ΣC = 〈ΣCM ,ΣCC〉 with n type parameters and a subsignature
Σ′

C = 〈Σ′
CM ,Σ

′
CC〉 such that ΣCC = Σ′

CC . Let SA be an abstract coalgebraic specifi-
cation over a signature ΣA = 〈ΣAM ,ΣAC〉 with a subsignature Σ′

A = 〈Σ′
AM ,Σ

′
AC〉. A

translation map φ from Σ′
C to Σ′

A is called a behavioural refinement from 〈SC ,Σ
′
C〉

to 〈SA,Σ
′
A〉 if φ maps behavioural models of SC to behavioural models of SA.

Both notions of refinements are compositional. If one considers behavioural refine-
ments from 〈SC ,ΣC〉 to 〈SA,ΣA〉 (i.e., the case where no methods are hidden) then, under
certain (reasonable) assumptions on the assertions of the abstract specification, one can
prove that assertional refinement coincides with behavioural refinement. See (Jacobs and
Tews, 2001) for details.

In the remainder of this subsection I construct an assertional refinement for the
queue specification of Figure 4.11 (on page 184). The refinement is based on the idea
that lists form queues, if one appends new elements at the end. The refining specification
ListQueue is in Figure 4.23. The complete source code of the refinement and the proofs
are available in the world wide web, see Appendix A.

In Figure 4.23 the ground signature ListOp introduces the function append for the con-
catenation of lists, which is predefined in pvs. The class specification ListQueue has only
two methods contents and set contents, where the latter is automatically generated by
the ccsl compiler as an update method for the attribute contents (see Subsection 4.4.2).
The method set contents has the following type

set contents : [Self, list[A]] −> Self

231



4. The Specification Language CCSL

Begin ListOp[ A : Type ] : GroundSignature
Constant

append : [list[A], list[A] −> list[A]];
End ListOp

Begin ListQueue[ A : Type ] : ClassSpec
Attribute

contents : Self −> list[A];

Defining
put : [Self, A] −> Self
put(x,a) = set contents(x, append(contents(x), cons(a,null)));

top : Self −> Lift[[A, Self]]
top x = Cases contents x of

null : bot,
cons(a,rest) : up(a, set contents(x,rest))

EndCases;

Constructor
l new : Self

Creation
new empty : contents(l new) = null;

End ListQueue

Figure 4.23.: A refinement of queues in ccsl

Further the ccsl compiler generates the following assertion.

contents set contents : Forall( l : list[A] ) : contents(set contents(x, l)) = l

So models of ListQueue are records with one field of type list[A].
An assertional refinement of the queue specification consists of three items: first, a

parameter translation, second, a translation function that maps models of ListQueue
to models of the queue signature, and, third, a proof that the result of the translation
function is a model of Queue. A parameter translation is not necessary in this example, so
I choose the identity translation. This means that models of ListQueue[A] get translated
into models of Queue[A].

For the second ingredient of an assertional refinement I need an interpretation of
the methods top and put for an arbitrary model of ListQueue. Because it is so obvious
how to do that I defined these two methods in the ListQueue specification as definitional
extensions.

232



4.10. Applications of CCSL

QueueRefine[ X, A : Type] : Theory
Begin

Importing ListQueueBasic[X,A]
c : Var (ListQueueAssert?)

Importing QueueBasic[X,A]

abs c(c) : QueueSignature[X,A] =
(# top := top(c),

put := put(c) #)

abs new(c)(z : (ListQueueCreate?(c))) : QueueConstructors[X,A] =
(# new := l new(z) #)

model : Proposition Forall(z : (ListQueueCreate?(c))) :
QueueModel?(abs c(c), abs new(c)(z))

End QueueRefine

Figure 4.24.: The theory ListQueue containing the refinement proof

It remains to prove that the queue assertions hold. This is done in pvs in the theory
QueueRefine, see Figure 4.24. The variable declaration for c on line 4 uses the dependent
types of pvs. Recall that ListQueueAssert? is a predicate on ListQueue coalgebras. By
putting parenthesis around such a predicate one obtains the (sub–) type of those inhabi-
tants that fulfil the predicate. So c is a ListQueue coalgebra (on state space X) that fulfils
the method assertions of ListQueue. Technically, the declaration of c (together with the
type parameters X and A) amounts to the assumption of an arbitrary ListQueue model.

The importing statement for QueueBasic makes all necessary notions from the speci-
fication Queue available. The functions abs c and abs new form the translation map φ (of
Item 2 of Definition 4.10.1). The definition of abs new looks a bit complicated because
the interpretation z of the constructor of ListQueue cannot be declared as a variable.

It remains to prove the proposition model. The proof is not completely trivial because
it involves some reasoning about bisimilarities. In the proof I used the following three
utility lemmas:

bisim char : Lemma Forall( x, y : X ) :
bisim?(c)(x,y) IFF contents(c)(x) = contents(c)(y)

abs bisim : Lemma Forall( x, y : X ) :
bisim?(c)(x,y) Implies bisim?(abs c(c))(x,y)

bisim abs : Lemma Forall( x, y : X ) :
bisim?(abs c(c))(x,y) Implies contents(c)(x) = contents(c)(y)
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The first one, bisim char, gives a characterisation of bisimilarity on models of ListQueue:
Two states are bisimilar precisely if their contents field is equal. The second lemma
abs bisim states that two bisimilar states x and y are also bisimilar when considered as
states of a queue with respect to the translated coalgebra abs c(c). The third lemma
describes the converse situation.

Behavioural refinements are more difficult to construct in general because usually the
existential quantifier, which is hidden in the notion of behavioural models, requires the
construction of a suitable abstract model. However, the technical aspects of the trans-
lation of a behavioural refinement into pvs are as simple as for assertional refinements.
For a behavioural refinement one would prove a proposition similar to the following.

same behaviour : Proposition Forall( z : (ListQueueCreate?(c)) ) :
bisim?(d(c), abs c(c))(new(b(c)(z)), new(abs new(c)(z)))

Here abs c and abs new form the translation map as before. The functions d and b give
the abstract model, which is required in the notion of behavioural models. Usually the
abstract model must be chosen in dependence of the concrete model, therefore d and b
take the concrete model as arguments.

4.10.2. CCSL Case Studies

The following case studies have been performed with ccsl.

The MSMIE Protocol

The Multiprocessor Shared-Memory Information Exchange protocol (Bruns and Ander-
son, 1994) is a protocol for communication between several processors in a real-time
control system. The protocol has been used for instance in the embedded software of
Westinghouse nuclear system design. In (Meyer, 1999) an early version of ccsl is used
to analyse the protocol. Meyer develops 4 specifications of the protocol in ccsl and
proves several refinements. Finally he implemented the protocol in Java and uses an
early version of the loop tool (Jacobs et al., 1998a) to translate the Java sources into
(their semantics in) pvs. Then he proved that the Java program forms a valid model of
the ccsl specification of the MSMIE protocol.

The YAPI Case Study

The Y–chart Application Programmers Interface (de Kock and Essink, 1999) is used at
Phillips for the development of signal processing systems. For one aspect of the interface,
the buffered data transfer, (Lambooij, 2000) develops a ccsl specification and shows its
correctness via refinement.
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Case Study on Transaction Mechanisms

Transactions are used to make certain designated sequences of actions atomic. Transac-
tion mechanisms are important in the context of databases or operating systems, but
also in the world of smart cards — where there is always the possibility that a smart
card is removed before an appropriate sequence of actions is completed, see Chapter 5
of (Chen, 2000). In the joint work (Jacobs and Tews, 2001) we provide an abstract speci-
fication of a (simplified) transaction mechanism. There are two standard implementation
techniques for a transaction mechanism: new value logging and old value logging. For
both approaches we derive an assertional refinement from the original specification and
prove its correctness in pvs. This case study uses the current ccsl compiler to translate
the three specifications into pvs. The complete ccsl and pvs sources are available at
the following URL: http://wwwtcs.inf.tu–dresden.de/∼tews/Transaction.

The Fiasco Case Study

Fiasco (Hohmuth, 2000; Hohmuth, 1998) is a micro kernel operating system developed
within the drops (Härtig et al., 1998) project. The drops project is hosted at the
computer science department of the Technische Universität Dresden (Dresden University
of Technology) and aims on the construction of an operating system that supports
quality of service requirements. As a micro kernel Fiasco implements only the absolutely
necessary operating system functionality: address spaces, processes, and interprocess
communication. Fiasco is an implementation of the L4 micro kernel interface in C++.
It contains about 20.000 lines of C++ code.

In the Fiasco case study I formalised a part of the internal interface of the mem-
ory management in Fiasco. Then I tried to prove that the source code of Fiasco
gives rise to a model of my specification. The case study revealed some hidden assump-
tions in the scrutinised interface, therefore the proof could not be completed. The case
study is described in full detail in (Tews, 2000a), the source code (comprising all ccsl
and pvs source files and also some C++ files) is available in the world wide web at
http://wwwtcs.inf.tu-dresden.de/∼tews/vfiasco/.

For the Fiasco case study address spaces and virtual memory are important. Virtual
memory is the memory that is visible to applications. Physical memory is the main
memory that sits on the mother board of the computer. The operating system takes
care that each application can use a fair amount of physical memory and that one
application cannot access or modify the memory of another application without proper
authorisation. This task is accomplished with address spaces. An address space defines
a partial mapping of (addresses in) virtual memory to (addresses in) physical memory.
Each application has its own address space so that the same virtual addresses usually
refer to different physical addresses in different applications. Address spaces are partial
mappings, because not all virtual addresses are mapped to physical addresses. If an
application accesses such a non-mapped virtual address then the hardware signals a
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page fault. Page faults occur as the result of programming errors or when the operating
system has swapped parts of the applications memory to hard disc. In the former case the
application is usually terminated. In the latter case the operating system loads the data
from the swap area and adjusts the address space of the application. If an application
needs more memory it has to request it from the operating system. In case the request
can be satisfied, the operating system changes the address space of the application. This
shows that the manipulation of address spaces is a primary task for an operating system.

In an Intel based personal computer (more precisely in the IA32 architecture) the
data structure that represents an address space is called a page directory. A page di-
rectory is a hierarchical structure of pointers that describe the address mapping. Any
manipulation of address spaces boils down to the insertion or deletion of some pointers in
a page directory. (For a more detailed account of virtual memory and address mapping
see (Intel, 1999) or Chapter 4 of (Tews, 2000a).)

Fiasco is a particular nice challenge for ccsl because Fiasco was developed fol-
lowing the object–oriented paradigm: The whole micro kernel consists of a set of classes,
each capturing some particular functionality. The class space t provides the internal ab-
straction of address spaces: Objects of space t are page directories and the methods of
space t provide suitable services. For instance the methods v insert and v delete insert
or delete mappings of virtual memory (in the address space that is represented by the
object on which these methods are invoked). Another method is switchin context. It im-
plements the change of the address space (by advising the hardware to use from now on
the page directory in the current object for translating virtual addresses into physical
ones).

In the case study I decided to investigate two correctness properties of the meth-
ods v insert and switchin context. The first correctness property is that these two meth-
ods should always terminate without itself producing a page fault. The second prop-
erty is that after the insertion of a super page mapping31 with a subsequent call of
switchin context the hardware should map the virtual addresses as desired.

To be able to express the two correctness properties I first developed the ccsl spec-
ification PhyMem of physical memory. The physical memory provides operations for
reading and writing of memory cells. Further it is bounded, that is, accesses to address-
es above a memory depended limit go into nowhere.

By exploiting inheritance of ccsl specifications, the physical memory is extend-
ed into a specification VirtMem of virtual memory. The virtual memory has a method
virt to phy to translate virtual addresses into physical ones. The read and write methods
are redefined as partial methods that work on virtual addresses now. They are partial
methods because they fail if their virtual address argument is not mapped to a physical
address by the address space in charge.

31A super page is a continuous memory area of 4 megabyte aligned at an address that is a multiple of
222.
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The two specifications of virtual and physical memory form the basis of the case
study. Therefore I checked their consistency and constructed the final model for both.
The inspection of the state space of both models shows that there is no unwanted
behaviour in the final models. This provides an informal argument for the correctness
of the two memory specifications.

The specification Space t captures a part of the interface of the class space t. As
assertions it contains the two correctness properties from above, which can now be
expressed in terms of read and write operations on the virtual memory of VirtMem.
The aim of the case study was then to show that the C++ source code of the methods
v insert and switchin context of class space t yields a model of the Space t specification.
For that I translated the C++ source by hand into pvs and tackled the proof. This
sounds rather easy but the proof development in pvs was a three–month enterprise. The
hand translation of the C++ sources into pvs is certainly a weakness of the case study.
However, a translation tool that computes the semantics of a C++ program in the logic
of pvs was certainly beyond the scope of the case study.32

As I indicated above the attempted proof failed because the space t interface contains
some hidden assumptions that have not been formalised in the specification Space t.
During the proof it became apparent that, if one combines certain states of the virtual
memory with certain arguments of the method v insert, then an assert statement33 in
the method v insert fails (for a more precise formulation see Proposition 6.1 in (Tews,
2000a)). The hidden assumption in the interface of v insert is that one may only insert
address mappings for virtual addresses that are not already mapped. The source of
Fiasco tests always for this condition.

The case study required about four months of work. It was carried out in the autumn
of 1998 with pvs version 2.2, patch level 1.46. It consists of about 5, 000 line of source
code. There are 230 lemmas and 150 type correctness conditions that are proved with
about 4, 000 pvs commands. To type check the whole specification and to run all the
proofs takes more than half a hour on a 333MHz Pentium II box.

Although the proof of the main theorem failed it was possible to verify a few prop-
erties of the fiasco source code. Therefore it is fair to say that the case study was
successful in the sense it showed that coalgebraic specification can well be applied to
operating-system verification.

One has to say that pvs did not perform very well under this case study. During
the case study I submitted numerous bug reports. Some time after I completed the case
study pvs version 2.3 was released. This new version crashed when parsing the source
code of the case study. At the time of writing pvs version 2.4 patch level 1 is available.
It still contains some bugs that make it impossible to port the case study.

32Such a translation tool would of course be nonsensical unless it restricts C++ to a well understood
subset.

33In C++ the assert statement (which is actually a preprocessor macro) tests for a logical condition
and aborts the program if the condition is not true.
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4.10.3. Specifying Companies — A Comparison with the UML

In this subsection I try to clarify the relation between ccsl and the universal modelling
language UML with its object constraint language OCL. The UML is a mostly graphical
software modelling language. An introduction to the UML is (Fowler, 1999), the current
reference is (OMG, 2001). The object constraint language OCL is part of the UML,
see (Warmer and Kleppe, 1999) or for the current reference (OMG, 1997). OCL is a
formal language for specifying invariants, pre– and postconditions and other kinds of
constraints.

The UML and its part OCL have a target different from ccsl: The UML is a tool
dedicated to the software design process. As such UML necessarily contains informal
elements, for instance text in natural language (which is not treated as a comment).
However, any software design can also be viewed as a specification. This is the field
where ccsl meets the UML.

At the time of writing a comparison between the UML and ccsl is impossible for the
following reason: The UML is currently a moving target (Kobryn, 1999), whose design
and definition process has not been completed yet. In particular, an official semantics of
the UML does not exit (yet). The sections on semantics in the current reference manu-
al (OMG, 2001) contain only additional syntactic constraints and explanations in natural
language (Astesiano et al., 1999). It appears that currently for some UML constructs
a different (and incompatible) semantics is used in different application domains of the
UML.34

However, the UML has a large research community. There is work on the semantics
of the UML (for instance (Clark et al., 2001)). Further, there is also work on topics that
require a precise semantics for parts of the UML (for instance (Richters and Gogolla,
1998)). So instead of comparing ccsl with the official UML one could use one of the
semantics of the UML that are currently in use. Unfortunately such a comparison is
beyond the scope of this thesis.

In this subsection I illustrate the relation between ccsl and the UML/OCL by means
of translating an UML example to ccsl. The translation is based on the semantics
of UML class diagrams and OCL as it is described in (Richters and Gogolla, 1998)
and (Warmer et al., 2001).

A translation of ccsl into (the formal part of) the UML is impossible for at least
two reasons. First, the expressive power of OCL is far too low compared with ccsl’s
logic. Quantification in OCL is finite, because states of models of UML class diagrams
are finite. So OCL is a propositional language: One can only express decidable properties
in it (see also (Mandel and Cengarle, 1999) for the expressive power of OCL). Second,
the UML is very much focused on the object-oriented paradigm. Similar to many object-
oriented programming languages it lacks support for (algebraic) abstract data types.

For the example translation from the UML to ccsl I chose the company specification

34Jean–Michel Bruel at the UML tutorial of the ETAPS 2001 conferences in Genova.
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1..*

worksin

*

Department

salary : Integer
name : String
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{more_employees_{more_projects_

Project
* *name : String

budget : Integer
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name : String
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higher_salary} than_projects}

workson

Figure 4.25.: A simple company — the original UML class diagram

that appears in the online documentation of the use tool.35 Almost the same example
is also used in (Richters and Gogolla, 2002). Figure 4.25 shows the UML class diagram.
For the translation to ccsl I will modify the example in the following. I refer to the
version that is in Figure 4.25 (including the OCL constraints discussed below) as the
original company specification.

Let me explain Figure 4.25 for those readers not familiar with the UML: Classes are
displayed as boxes, like

Employee

salary : Integer
name : String

Here, Employee is the name of the class and name and salary are its attributes. (The
third frame in the box is reserved for method declarations. There are no methods in this
example.) The lines between the classes are associations . An association is a relationship

35use stands for UML-based Specification Environment, see
http://www.db.informatik.uni-bremen.de/projects/USE/. The use tool is also described in (Richters
and Gogolla, 2002).
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between instances of the two classes. Nothing is said about the kind of the relationship.
An association can be as close as one object containing the associated object. However,
it is also possible that an association merely indicates that the implementor of one class
must be aware of the existence of the associated class.

The associations in Figure 4.25 are bidirectional, that is, from an instance of Project
it is possible to get its controlling department and for an instance of Department one
can get all controlled projects.

The annotation at the endpoints of associations are multiplicities . The multiplicity
specifies how many instances of a class can participate in the association. More precisely,
the multiplicity of an association end is the number of possible instances associated with
a single instance of the other end. The multiplicity ∗ denotes an arbitrary (but finite)
number.

Translated into English the associations in Figure 4.25 express that

• every employee works in at least one department (but there might be departments
without employees)

• for every project there is precisely one controlling department (but there might be
departments that control no project)

• employees can work on several projects (zero included) and several employees (also
zero included) can work on one project

A model of an UML class diagram is an abstract state machine36 ((Börger, 2002),
Chapter 2 of (Stärk et al., 2001)). It contains (without going into details) a finite set of
objects for each class in the diagram and a suitable relation for each association. Further,
it supports all declared attributes and methods. Methods (which are not present in the
current example) can change the current state, which might involve creating or deleting
objects and changing attribute values.

In the original company example there are four OCL constraints that further restrict
the class of models. Each constraint is associated with one class, its context. In Fig-
ure 4.25 I depicted the constraints with their names in braces. Expressed in English the
constraints denote the following.

more projects higher salary
Employees get a higher salary when they work on more projects.

more employees than projects
The number of employees working in a department must be greater or equal to
the number of projects controlled by the department.

36This is not explicit in (Richters and Gogolla, 1998) or (Warmer et al., 2001), there the authors spell
out the details of a particular abstract state machine.
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context Department
inv more employees than projects:

self.employee−>size >= self.project−>size

context Employee
inv more projects higher salary:

Employee.allInstances−>forAll(e1, e2 |
e1.project−>size > e2.project−>size Implies e1.salary > e2.salary)

context Project
inv budget within department budget:

self.budget <= self.department.budget

inv employees in controlling department:
self.department.employee−>includesAll(self.employee)

Figure 4.26.: Original OCL constraints for the company example

budget within department budget
The budget of a project must not exceed the budget of the controlling department.

employees in controlling department
Employees working on a project must also work in the controlling department of
that project.

Figure 4.26 shows the four constraints in OCL syntax. In OCL many things are
implicit, so sometimes it is a bit difficult to understand what is meant. The context of
an OCL formula determines the type of the free variable self. So in the first invariant
more employees than projects it denotes an object of class Department. The invariant
holds in a state of a model, if it holds for all objects of class Department that are present
in this state.

Operations for classes are written with the object-oriented dot notation: In the ex-
pression self.employee the operation employee is applied to self. The operation employee is
implicitly defined for each Department object d: it yields the set of Employee objects that
are associated via the association worksin with the department d in the current state.
The operations project, department, and employee are implicitly defined in a similar way.
There is an exception for associations endpoints with multiplicity 1: The operation that
is implicitly defined for such associations returns an object instead of a set. Therefore,
in the constraint budget within department budget, the expression self.department denotes
the controlling department (rather than a singleton set containing it).

For set-valued types (more precisely for all collections, but in this example the only
collections are sets) the arrow −> replaces the dot in method invocation. So x−>size
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denotes the operation size (which is part of an assumed generic class for sets from
the OCL standard library) applied to x. The result is the cardinality of x. The OCL
constraints in Figure 4.26 use two other operations for sets: The operation forAll stands
for universal quantification (over the variables e1 and e2) and includesAll denotes the
subset relationship. Finely, the operation allInstances (which takes a class as argument)
yields the set of all objects of that class that are present in the current state.

With these explanations it is easy to see that the constraints in Figure 4.26 coincide
the English description given before.

In the following I formulate the company example in ccsl. There are two major prob-
lems: First, in ccsl the dependencies between classes must not be cyclic. Second, ccsl
cannot represent bidirectional associations directly. Once these two problems are solved
the translation into ccsl is straightforward. In the following I show two different transla-
tions of the company example into ccsl. In the first one I restructure the original UML
specification avoiding circular dependencies. The second translation is more systematic
and models the associations in a way such that circular dependencies are not problem-
atic. I refer to the first translation as the structured company specification (because it
contains some structure directly connecting the classes of departments and employees).
The second translation is called the flat company specification (because the associations
between departments, employees, and projects are moved to a different class).

For both the structured and the flat company specification, it is necessary to enrich
ccsl with a type constructor for sets and a few operations over sets. Figure 4.27 shows
the ground signature extensions that accomplish this. The first extension BaseTypes
declares the types of strings, natural numbers, and ordinal numbers. It further declares
a few comparison operations. ccsl does not support overloading, therefore it is a good
idea to use different symbols for comparing natural numbers and ordinals. The types
and constants of the BaseTypes ground signature are defined in the pvs prelude.

The second extension SetSig defines setof as a type constructor for sets. In what
follows, both bisimulations and coalgebra morphisms do not play any role. Therefore,
for this example, it is irrelevant whether I use the co– or the contravariant powerset
functor for the semantics of setof (see also Remark 3.3.5). Here I use the contravariant
version because it can be defined inside ccsl as a type equation.

The ground signature SetSig also declares some functions that are needed in the
following. The function size determines the cardinality of a set. I defined size in an
additional pvs theory because there is no such function available in pvs. It returns the
number of elements for all finite sets and ω (the first limit ordinal) for all infinite sets. In
the pvs prelude the function the is defined for singleton sets only. Here I declare it with
a slightly more general type and rely on the pvs type checker (compare the discussion
in Example 4.3.2).

The ground signature RelSig defines relations as subset of the cartesian product. The
function domain returns the set of those x’es that stand in relation with a particular y.
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Begin BaseTypes : GroundSignature
Importing ordinal defs

Type string
Type nat
Constant (* comparisons from the PVS prelude *)

(>) : [nat,nat −> Bool];
(<=) : [nat,nat −> Bool];

Type ordinal
Constant (* comparisons for ordinals *)

(>>) : [ordinal, ordinal −> Bool];
(>>=) : [ordinal, ordinal −> Bool];

End BaseTypes

Begin SetSig[ X : Type ] : GroundSignature
Importing Setops[X]

Type setof = [ X −> Bool ] (* the type of sets *)

Constant
is finite : [setof[X] −> Bool]; (* true for finite sets *)
size : [setof[X] −> ordinal]; (* cardinality *)
the : [setof[X] −> X]; (* the({x}) = x *)
subset? : [setof[X], setof[X] −> Bool]; (* subset relation *)

End SetSig

Type Rel[ X, Y : Type ] = [ X, Y −> Bool ]

Begin RelSig[ X, Y : Type ] : GroundSignature

Constant (* domain and codomain of relations as sets *)
domain : [ Rel[X, Y], Y −> setof[X] ]
domain(R,y) = Lambda(x : X) : R(x, y);

codomain : [ Rel[X, Y], X −> setof[Y] ]
codomain(R,x) = Lambda(y : Y) : R(x, y);

End RelSig

Figure 4.27.: ccsl ground signature extension with sets and ordinals
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More formally:

domain(R, y) =
∐

π1
(R ∧ π∗2 {y}) = {x | xR y}

codomain(R, x) =
∐

π2
(R ∧ π∗1 {x}) = {y | xR y}

In the first translation of the company example I restructure the original class diagram,
thereby avoiding circular dependencies. Figure 4.28 shows an UML class diagram with
the new class structure. There are the following differences with the original class diagram
in Figure 4.25:

• Associations are directed now and have ∗ as multiplicity. This makes it possible
to model each association with a set–valued method. To obtain the effect of the
original multiplicities I add a few assertions in the resulting ccsl specification.

• The two OCL constraints in context project have been moved. This is necessary be-
cause, for instance, from an object of class Project one can not reach its controlling
department any more.

• There is an additional class Configuration. This class captures the following dif-
ference in the semantics of ccsl and UML: A model of a class in ccsl is a set
(of objects) together with a coalgebra. For ccsl the set of objects represents all
possible (states of) objects. A model of an UML class diagram contains (among
other things) a set of objects for each class in the diagram. However, for UML
such a set of objects represents only the live objects in a certain state of the whole
system.

Objects of the class Configuration contain a set of departments, employees, and
projects. Each Configuration object corresponds to a valid state in a model of the
original class diagram.

The translation from Figure 4.28 to ccsl is rather straightforward: Each class in
the diagram is modelled by one class specification in ccsl. Attributes are modelled
by methods of the appropriate type. Associations are modelled by set–valued methods.
Figure 4.29 shows the class interfaces in ccsl syntax.

It remains to translate the OCL constraints to ccsl and to add a few assertions that
capture the multiplicities in the original company example. The assertions that deal with
multiplicities are added to the class Configuration.

The OCL constraint more projects higher salary can be translated without problems
to ccsl. As an assertion in class Employee it looks as follows:

Assertion Selfvar x : Self
more projects higher salary :

Forall(y : Self) : size(x.workson) >> size(y.workson) Implies
x.salary > y.salary;
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Figure 4.28.: A simple company — structured ccsl design
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Begin Project : Final ClassSpec
Method

name : Self −> string;
budget : Self −> nat;

End Project

Begin Employee : ClassSpec
Method

name : Self −> string;
salary : Self −> nat;
workson : Self −> setof[Project];

End Employee

Begin Department : ClassSpec
Method

name : Self −> string;
budget : Self −> nat;
controls : Self −> setof[Project];
employees : Self −> setof[Employee];

End Department

Begin Configuration : ClassSpec
Method

is funded : Self −> setof[Project];
lives : Self −> setof[Employee];
dep exists : Self −> setof[Department];

Defining (* return the employees that work on a given project *)
project members : [Self, Project] −> setof[Employee]
project members(s,p) = Lambda(e:Employee) : s.lives e And e.workson p;

End Configuration

Figure 4.29.: ccsl specification for the structured company (without assertions)
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Note that the preceding assertion is not invariant with respect to behavioural equality,
and indeed with this assertion the Employee specification does not have a final model.

The class department has two assertions:

Assertion Selfvar x : Self
more employees than projects :

size(x.employees) >>= size(x.controls);

budget within department budget:
Forall(p : Project) : x.controls p Implies p.budget <= x.budget;

Only the constraint budget within department budget differs from the original OCL con-
straint, because it is situated in a different class now.

The OCL constraint employees in controlling department has been moved to the class
Configuration:

Assertion Selfvar s : Self
employees in controlling department :

Forall(p : Project, d : Department) :
s.dep exists d And d.controls p Implies

subset?( s.project members p, d.employees);

The two preconditions account for the fact that the original OCL constraint is required
only for those employees and departments that are present in a given state of the system.

The remaining assertions of the class Configuration deal with the multiplicities in
the original class diagram or with facts that are defined in the semantics of UML class
diagrams. First, the sets of objects that are present in a particular state must be finite:

finiteness :
is finite(s.is funded) And is finite(s.lives) And is finite(s.dep exists);

Next I capture the multiplicities. There are two requirements in the class diagram 4.25:
First, each employee works in at least one department, and second, for every project
there is a unique controlling department.

nonempty affilation :
Forall(e : Employee) : s.lives e Implies

Exists(d : Department) : d.employees e And s.dep exists d;

exists controlling department:
Forall(p : Project) : s.is funded p Implies

Exists(d : Department) : s.dep exists d And d.controls p;
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unique controlling department :
Forall(d1, d2 : Department) : Forall(p : Project) :

s.dep exists d1 And s.dep exists d2 And s.is funded p And
d1.controls p And d2.controls p

Implies
d1 = d2;

The remaining three assertions deal with the fact that (the semantics of) an associ-
ation (in a particular state) might only relate objects that exists (in that state).

workson funded :
Forall(e : Employee, p : Project) :

s.lives(e) And e.workson p Implies s.is funded p;

dep control funded :
Forall(d : Department, p : Project) :

s.dep exists d And d.controls p Implies s.is funded p;

dep employees live :
Forall(d : Department, e : Employee) :

s.dep exists d And d.employees e Implies s.lives e;

This completes the structured company specification in ccsl. As part of this example
I developed a model for the Configuration specification, thereby proving its consistency.
The model and the necessary proofs are in the pvs source code for this section, see
Appendix A.

The first translation into ccsl was obtained in a more or less ad hoc way. The re-
sulting ccsl specification models some parts of the original UML diagram in a direct
way: For instance the associations workson is represented by the method workson in the
class Employee. This makes it possible to translate some of the original OCL constraints
as assertions for the specifications of Department and Employee. For the structured com-
pany it is possible to develop, for instance, the theory of the class Employee (without
taking departments into account). Note that this is not possible with an UML/OCL
specification. The semantics of UML class diagrams and OCL constraints is only defined
for complete systems. Reasoning about one class in isolation is impossible.

I present now the second translation of the company example into ccsl: The flat compa-
ny specification. The structured company specification above resembles what one would
have got when modelling the company from scratch in ccsl. In contrast, the flat com-
pany (developed below) resembles a specification of the semantics of the original UML
class diagram.

Figure 4.30 shows the structure of the flat company as UML class diagram. This time
associations are modelled as relations. They are stored in the class that models states of
the complete system, which is called FlatCompany this time. As a consequence the OCL
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1

EDRelation **

** *

Department

name : String
budget : Integer

1

DPRelation* *

FlatCompany

lives

** *

is_funded

1

{more_employees_than_projects}

{more_projects_higher_salary}

{budget_within_department_budget}

{employees_in_controlling_department}

1

EPRelation

workson

worksin

controls

Employee

salary : Integer
name : String

1

* *

**

*

1

Project

name : String
budget : Integer

dep_exists

* * *

Figure 4.30.: A simple company — flat ccsl design
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constraints must be moved to the class specification FlatCompany as well. The different
relations that appear in diagram 4.30 are instances of the generic type of relations, which
has been defined in Figure 4.27.37 From diagram 4.30 the translation to ccsl is again
straightforward. Figure 4.31 shows the result. In the ccsl source I prepended an F to
the class names to make them distinct from the structured company specification. Note
that it is now possible to use final semantics for projects, employees, and departments.

In the flat company only class FlatCompany contains assertions. The first assertion
ensures that all system states are finite.

Assertion Selfvar s : Self
finiteness :

is finite(s.is funded) And is finite(s.lives) And is finite(s.dep exists);

The next three assertions make sure that objects that are contained in one of the asso-
ciations are also contained in the sets of ‘living’ objects.

worksin living :
Forall(e : FEmployee, d : FDepartment) : s.worksin(e,d) Implies

s.lives e And s.dep exists d;

controls funded :
Forall(d : FDepartment, p : FProject) : s.controls(d,p) Implies

s.dep exists d And s.is funded p;

workson living :
Forall(e : FEmployee, p : FProject) : s.workson(e,p) Implies

s.lives e And s.is funded p;

The approach to represent an association with an relation does not model multiplicities.
For the multiplicity constraints of the original company class diagram we need two
additional assertions.

worksin multiplicity :
Forall(e : FEmployee) : s.lives e Implies

Exists(d : FDepartment) : s.worksin(e, d);

controls multiplicity :
(Forall(p : FProject) : s.is funded p Implies

Exists(d : FDepartment) : s.controls(d,p))
And
(Forall(d1, d2 : FDepartment, p : FProject) :

s.controls(d1,p) And s.controls(d2,p)
Implies d1 = d2 );

37I prefer to use different names in Figure 4.30 for the three relations instead of introducing the UML
construct for generic classes.
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Begin FProject : Final ClassSpec
Method

name : Self −> string;
budget : Self −> nat;

End FProject

Begin FEmployee : Final ClassSpec
Method

name : Self −> string;
salary : Self −> nat;

end FEmployee

Begin FDepartment : Final ClassSpec
Method

name : Self −> string;
budget : Self −> nat;

end FDepartment

Begin FlatCompany : ClassSpec
Method

is funded : Self −> setof[FProject];
lives : Self −> setof[FEmployee];
dep exists : Self −> setof[FDepartment];

worksin : Self −> Rel[FEmployee, FDepartment];
controls : Self −> Rel[FDepartment, FProject];
workson : Self −> Rel[FEmployee, FProject];

End FlatCompany

Figure 4.31.: ccsl specification for the flat company (without assertions)
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It remains to translate the OCL constraints from Figure 4.26. The only thing that re-
quires translation here is the access along an association. For instance the OCL ex-
pression self.employee in the more employees than projects constraint is translated to
domain(s.worksin, d). Here d takes the role of self of the current department and s is
an object of class FlatCompany, which represents the current state of the whole system.
The assertions are as follows:

more employees than projects :
Forall(d : FDepartment) : s.dep exists d Implies

size(domain(s.worksin, d)) >>= size(codomain(s.controls, d));

more projects higher salary :
Forall(e1, e2 : FEmployee) . s.lives e1 And s.lives e2 And

size(codomain(s.workson, e1)) >> size(codomain(s.workson, e2))
Implies e1.salary > e2.salary;

budget within department budget :
Forall(p : FProject) : s.is funded p Implies

p.budget <= the (domain(s.controls, p)) . budget;

employees in controlling department :
Forall(p : FProject) :

subset?(domain(s.workson, p),
mapflatten(domain(s.controls, p),

Lambda(d:FDepartment) : domain(s.worksin,d)));

The last assertion uses the function mapflatten. It is defined in a separate ground signa-
ture extension in Figure 4.32. An application mapflatten(x, f) corresponds to the OCL
term x−>collect(f)−>asSet() with operations from the OCL standard library.

The assertion budget within department budget uses the function the (from the ground
signature SetSig, see Figure 4.27) to access the only element in a singleton set. After
translating the complete flat company specification to pvs this use of the will produce
a type check condition (TCC) when type checking. The proof obligation (that the ar-
gument of the is a singleton set) can be proved with the help of the controls multiplicity
assertion. However, this requires that the FlatCompany specification is translated with
the –dependent–assertions switch (see Subsection 4.9.9).

This completes the flat company specification. As for the structured company, the
pvs source code contains a model for FlatCompany proving its consistency.

The translation that led to the flat company specification is done in a systematic
way. One can translate a large class of UML class diagrams and OCL constraints into
ccsl this way. However, the flat company specification is not so well structured: All
semantic constraints and a large part of the structure of the original company (including
all associations) are contained in the class FlatCompany.

As it stands the structured company and the flat company specification are not
equivalent. There are the following differences:
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Begin MapFlatSig[R,T : Type] : GroundSignature
Importing MapFlat[R,T]
Constant

mapflatten : [setof[R], [R −> setof[T]] −> setof[T]]
mapflatten(Rs, f) = Lambda(t : T) : Exists(r : R) : Rs(r) And f(r)(t)

End MapFlatSig

Figure 4.32.: Ground signature extension for mapflatten

1. In the structured company the constraint more projects higher salary holds globally,
that is for all employee objects. In the flat company this constraint is imposed only
on living employees.

2. In the flat company two employees are provably equal when they have identical
name and salary. However, in the structured company it is possible that two dif-
ferent employee objects have identical name and salary (and only their their field
workson differs). A similar statement holds for departments.

3. In the flat company I used final semantics for departments and employees. This
makes it possible to create (via the unique embedding into the final model) ob-
jects of type FEmployee and FDepartment. In the structured company I use loose
semantics. Because there are no constructors it is impossible to create objects of
type Employee and Department.

The preceding list of differences is complete. This has been proved in pvs. More
precisely I proved the equivalence of the structured company and the flat company
specifications under the following assumptions:

1. The constraint more projects higher salary holds globally (that is for all employees)
in the flat company.

2. In the structured company two employees are equal if they have equal names and
salary and two departments are equal if they have equal names and budgets.

3. The loose models for employees and departments in the structured company are
big enough: there exist coalgebra morphisms into the models of Employee and
Department that allow me to identify employees and departments with particular
attributes.

For a logical description of these assumptions and the precise equivalence that has been
proved I refer to the pvs source code (see Appendix A).
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The example done in this subsection suggests that UML class diagrams enriched
with OCL constraints can be embedded into ccsl rather easily. The example shows the
following conceptual differences between the UML and ccsl:

• The UML advocates the description of complete systems. Thus, mutual recursive
dependencies between classes are no problem.

• ccsl focuses on single classes. It is necessary to work around cyclic dependencies.
The structured company specification and the flat company specifications use two
different approaches to deal with that problem.

• In ccsl less things are implicit. For a translation from the UML one has to make
some parts of the UML semantics explicit.

4.11. Summary

This chapter described the coalgebraic class specification language ccsl. The unique
feature of ccsl is the combination of abstract data type specification with coalgebraic
class specifications that enables the iteration of (algebraic) abstract data types and
(coalgebraic) behavioural types. The semantics of ccsl is based on algebras and on
coalgebras. Other distinctive features of ccsl are the higher-order equational logic used
in the class specifications and the method-wise modal operators.

This chapter is the most comprehensive account on ccsl, superseding (Hensel et al.,
1998) and (Rothe et al., 2001). It describes the complete syntax and semantics of ccsl.

Comparison with other Specification Environments

OBJ is a family of similar algebraic specification languages based on order sorted al-
gebra. Members of the family are for instance OBJ3 (Goguen and Malcolm, 1996),
CafeOBJ (Diaconescu and Futatsugi, 1998), and BOBJ. The latter two include sup-
port for hidden algebras and reasoning about hidden congruences, so it is possible to
specify behavioural types in CafeOBJ and in BOBJ. All members of the OBJ family
contain parametrised modules and provide module expressions for the manipulation of
modules. OBJ inherits the restrictions of algebraic specification. Most notably, signa-
tures can only contain operations of the form S1 × · · · × Sn

//S0 , where all the Si are
primitive sorts. Structured input and output types, as they occur naturally in ccsl, are
impossible in OBJ.

The common framework initiative (Mosses, 1997) aims at a common framework for
algebraic specification and development. It integrates many of the diverging extensions
of algebraic specification. The initiative includes the design of the Common Algebraic
Specification Language, casl38 (Mossakowski, 2000). The logic of casl is a first-order
38The casl language of the common framework initiative has nothing in common with the Custom

Attack Simulation Language (casl) (Vigna et al., 2000; Secure Networks, 1998).
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logic with equality, partial functions, subsorting, and sort generation constraints. There
are various sublanguages of casl, for instance for conditional equational logic or horn-
clause logic. However, casl does only contain algebraic signatures, so structured input
and output types are not possible. At the moment casl does not support behavioural
types.

DisCo (Kellomäki, 1997) is a specification method for reactive systems, it is devel-
oped at Tampere University of Technology, Finland. DisCo is based on the temporal
logic of actions (TLA) (Lamport, 1994). In the DisCo specification language one can
specify object systems and their transitional behaviour. Objects have a state chart like
hierarchical structure but may not contain methods. Methods are specified outside of
the objects as actions. DisCo specifications can be animated or translated into pvs.
In pvs one can do refinement proofs, but it appears that crucial parts of the refine-
ment proof cannot be formalised in pvs, because the translation of DisCo into pvs is
incomplete (Kellomäki, 1997). There is no notion of abstract data type in the DisCo
specification language.

The Unified Modelling Language UML is a graphical notion mainly developed for
software design. However, in combination with the Object Constraint Logic OCL one
can use UML class diagrams to specify properties of a software system. Such specifica-
tions can be equivalently described in ccsl. In general, a ccsl specification cannot be
formulated as an UML class diagram.

Future Work

There are many ideas about how to develop ccsl further. Here are the more important
ones:

• Support algebraic specifications (that is abstract data types with axioms).

• Generate more proofs for standard results.

• Include support for the powerset type constructor.

For the semantics of ccsl the open questions of Chapter 3 are important, especially
how iterated specifications behave if they contain binary methods. Also type parameters
with negative and mixed variance need clarification. Type parameters are important
when they get instantiated with the special type Self. If a type parameter gets only in-
stantiated with constant types, then it behaves more or less like an (unknown) constant.
So it seems that in Theorem 4.7.4 one could allow type parameters with negative or
mixed variance under the proviso that they get only instantiated with constant types.
However, it is not clear how to get the technicalities right.

ccsl as presented here has the following disadvantages. The logic of ccsl is different
from the logic of the target theorem prover. This is a consequence of developing the ccsl
compiler as a front end to existing theorem provers. A possible solution would be to build
a theorem prover for ccsl or to integrate ccsl into an existing theorem prover. The
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latter is an interesting idea in conjunction with the generic theorem prover isabelle.
In principle ccsl could be integrated into isabelle/hol in the same way as the data
type package of (Berghofer and Wenzel, 1999).

The second disadvantage of developing ccsl as a front end is that type checking
ccsl specifications is a two stage process. First, the ccsl compiler reads and checks a
specification, then one has to load the generated theories into the target theorem prover.
Some typing errors in the specification might only become apparent after the output of
the ccsl compiler has been type checked in the target theorem prover. For instance a
wrong use of an accessor function is not reported by the ccsl compiler. It only yields
an unprovable type correctness condition in pvs.
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The present thesis describes research in coalgebraic specification and verification. Coal-
gebraic specification is based on coalgebras and coinduction. Coalgebraic techniques are
especially suited for the specification and verification of (possibly infinite) processes and
object-oriented programs. The coalgebraic paradigm makes such specifications easier to
understand. The provided proof principle coinduction helps to develop proofs on a more
abstract level.

Coalgebraic techniques live in harmony with traditional algebraic specification. In-
deed, it is best to combine algebraic and coalgebraic methods in one specification en-
vironment. Typically, in such an environment data structures are specified as abstract
data types, while the entities that manipulate the data are specified with coalgebraic
means.

The present thesis describes two contributions in the field of coalgebraic specification:
Chapter 3 generalises the traditional notion of coalgebra such that coalgebras can model
methods with arbitrary types, especially binary methods, as they occur in object-oriented
programs. Chapter 4 presents the Coalgebraic Class Specification Language ccsl.

The approach of Chapter 3 to generalise the notion of coalgebra is bases on bivariant
functors Cop ×C //C and the idea of separating co– and contravariant occurrences of
the special type Self. This approach outclasses other approaches that have been proposed
in the past to deal with the problem of binary methods in coalgebraic specifications.
In this thesis I restrict the investigation to (what I call) higher-order polynomial func-
tors. Higher-order polynomial functors are a straightforward generalisation of polynomial
functors, built up from the identity, constants, products, coproducts, and (unrestricted)
exponents.

Besides the definition of the generalised notions of coalgebra, coalgebra morphism,
bisimulation, and invariant Chapter 3 performs a careful analysis of the properties of
the new notion of coalgebra (and thereby its usefulness). Some of the results have been
expected (for instance the absence of the final coalgebra if binary methods are present),
other results are rather surprising (for instance that invariants do not give rise to sub-
coalgebras).

The analysis in Chapter 3 yields different levels of generalisation: Higher levels of
generalisation can model more complicated method types, but in turn possess less prop-
erties. Coalgebras for extended polynomial functors seem to be a fair compromise: They
provide sufficient generality to model classes of mainstream object-oriented languages
like C++, Java, or Eiffel. Still, coalgebras for extended polynomial functors possess most
of the structural properties that are known to hold for the traditional notion of coalge-
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bra. If the existence of a greatest bisimulation is required, then one has to work with
the more restricted class of extended cartesian functors.

An additional feature of the present thesis is that many theoretical results and all
the examples have been mechanically verified with the theorem prover pvs. The source
code of the pvs formalisation and the proofs are available in the world wide web.

Chapter 4 of the present thesis is a comprehensive account on the Coalgebraic Class
Specification Language ccsl, it describes its syntax and semantics in detail. ccsl com-
bines algebraic specification with coalgebraic specification. The design of ccsl and the
implementation of a prototype compiler was a group effort in the loop project on formal
methods for object orientation. ccsl uses initial algebras as semantics of abstract data-
type specifications and coalgebras as semantics of class specifications. One can use final
semantics (i.e., final coalgebras) for class specifications, if desired. The logic of ccsl is
based on higher-order logic with two extensions: behavioural equality and method-wise
infinitary modal operators. ccsl incorporates the extended notion of coalgebra from
Chapter 3 of the present thesis as well as the results on iterated specifications from the
related work of (Hensel, 1999) and (Rößiger, 2000b). ccsl is the only specification lan-
guage, that I am aware of, that can be used with either one of the two leading theorem
provers for higher-order logic pvs and isabelle/hol. ccsl has been applied in several
case studies, the most spectacular one on the verification of the micro-kernel operating
system Fiasco.

ccsl and its prototype implementation are research tools in that they allow the user
to experiment with signatures whose structural properties have not been investigated
yet. Novice users can request the ccsl compiler to check that their specification stay
in the well understood fragment of ccsl. As a tool coming out of a PhD project ccsl
could be improved in many ways. In a future version ccsl should support axioms in
algebraic specifications. Further the ccsl compiler should generate proofs along with
the lemmas it generates.
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A. Guide to the PVS Sources

The theorem prover pvs plays in several ways an important role for this thesis. First,
important parts of the main propositions of Chapter 3 have been formalised and proved
in the higher-order logic of pvs. Second, pvs is one of the target systems of the proto-
type compiler for the coalgebraic class specification language ccsl. Third, a number of
examples that are presented in this thesis have been developed with pvs. So there is a
lot of pvs material that has been developed partly to prove results of the this thesis,
partly to illustrate the presented material. This appendix gives some more information
about the pvs material that is related to this thesis.

The pvs sources (and the ccsl sources, if applicable) are available in the world wide
web at the following URL:

http://wwwtcs.inf.tu–dresden.de/∼tews/PhD/

The ccsl compiler is available at

http://wwwtcs.inf.tu–dresden.de/∼tews/ccsl/

and the theorem provers pvs and isabelle are at

http://pvs.csl.sri.com/ http://isabelle.in.tum.de/

The preceding web pages contain additional information about how to down load, install,
and run the software. The main reference for pvs is (Owre et al., 1996), but as intro-
duction I recommend the documentation shipped with the system (Owre et al., 1999a;
Owre et al., 1999b) and the tutorials (e.g., (Crow et al., 1995)) available via the pvs
home page at the preceding URL. isabelle/hol is described in (Nipkow et al., 2002b).
Additional technical descriptions are in the manuals (Nipkow et al., 2002a; Wenzel, 2002;
Paulson, 2002).

The pvs sources comes in four directories. Their contents is as follows:

Fibration contains the formalisation of fibred category theory that is used in Section 2.4
and Chapter 3,

Queue contains the running example of queues of Chapter 3,

UML contains the ccsl translations of the company example of Subsection 4.10.3,

Variance contains a formalisation of the variance algebra of Subsection 4.2
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Unit : Theory % the final object in the PVS universe
Begin

unit : Type = upto(0)
End Unit

Bang[X : Type] : Theory % unique morphism into the final
Begin

Importing Unit
bang : [X −> unit] = Lambda( x : X ) : 0
single fun : Lemma Forall( f : [X −> unit] ) : f = bang

End Bang

Figure A.1.: Example pvs source code from file base.pvs: The final object in pvs.

The second section of this appendix contains a table that relates examples, propositions,
and lemmas of this thesis with the pvs source code. The following section illustrates the
formalisation of fibred category theory that has been used to prove the main theorems
of Chapter 3 in pvs.

A.1. Details of the PVS Formalisation

In the following I do not pay much attention to the concrete syntax of the pvs specifi-
cation language, because it is straightforward to understand. For instance the lambda
calculus expression λx : A . f(x) translates to Lambda(x : A) : f(x) in the syntax of
pvs. Similarly for existential and universal quantifiers. Syntactical peculiarities and bits
of the semantic of pvs are explained along the way. In the following, pvs source code is
set in sans serif, pvs keywords are in sans serif bold extended. Comments start with a
percent sign % and reach till the end of the line, they are set in italics.

The pvs source files are organised in theories. Theories have a unique name, can
declare parameters, and contain declarations and theorems. Declarations define types,
constants and functions. Theorems are formulae (i.e., boolean expressions) that can be
proved to be true in pvs. Figure A.1 shows as an example two theories that formalise
the final object in pvs.

The theory Unit has no type parameters and contains only one declaration: Via the
pvs built-in upto1 the type unit is defined as the type of all natural numbers up to (and
containing) zero, that is, unit is the type with the only inhabitant 0.

1The type upto is defined in the pvs prelude, which contains material that is available in all theories.
The type upto is a dependent type, it maps any natural number i to the type containing all j with
j ≤ i as inhabitants.
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The theory Bang proves that unit is indeed a final object. It contains a type parameter
that stands for an arbitrary other object X. The importing clause makes the material
from theory Unit available in theory Bang. The declaration bang defines the function
!X (thus proving its existence) and the theorem single fun states its uniqueness. The
function definition bang must declare the type of bang, here X ⇒ unit, in pvs written
as [X −> unit]. The proof of the theorem single fun applies first the extensionality rule
of higher-order logic:

Γ ` ∀x . f x = g x

Γ ` f = g

Then one expands the definition of bang and uses the type information to show that f x
equals zero.

Type parameters as in theory Bang add a form of polymorphism to pvs. Inside
a theory a type parameter functions as a constant type. From outside it looks like a
type variable: A theory that imports Bang can use the function bang with an arbitrary
type instantiated for X. The typechecker of pvs tries to infer the instantiation of a
polymorphic declaration. If this fails the user has to provide it explicitly. pvs usually
finds the right instantiation for declarations that depend on all type parameters of the
theory in which they are defined. Therefore it is preferable that all declarations in one
theory depend on all type parameters. For this reason it is often the case that strongly
related material is split into several theories with a different number of type parameters.

The dependent types in pvs make type checking undecidable. Therefore the type-
checker of pvs generates type check conditions (also called TCC’s). A TCC is associated
with a subexpression in the input that cannot be type checked to be correct. Type check
conditions have the form of theorems and the user is required to prove them, thereby
helping the typechecker out. For instance for the function definition bang in theory Bang
pvs generates the following TCC:2

bang TCC1 : Obligation Forall( x : X ) : 0 <= 0

The reason here is that the typechecker cannot check if the zero in the definition of
bang is an inhabitant of type unit. Therefore we have to prove that 0 fulfils the defining
predicate of upto(0). Most TCC’s (in particular the preceding one) can be discharged
with the default pvs TCC proof strategies.

In higher-order logic one models predicates by their characteristic functions. pvs
provides the following predefined type for predicates (where T is a type parameter):

PRED : TYPE = [T −> bool]

So a predicate (P ⊆ X) translates to a declaration P : PRED[X]. pvs directly supports
comprehension through its predicate subtyping feature. For a predicate P ⊆ X (i.e.,

2This TCC is generated by pvs version 2.3. Version 2.4 does not generate any TCC’s for the two theories
in Figure A.1, presumably because the type checker in the newer version is more sophisticated.
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for a function P : X //bool) the type expression (P) denotes the type comprising all
inhabitants of X that fulfil P (i.e., those that P maps to true).

The first step in the formalisation is the construction of the bicartesian closed struc-
ture in the base category Bpvs. (Recall from Section 2.4.4 that Bpvs is formed by the
types and functions that can be represented in pvs.) The corresponding pvs theories
are in file base.pvs. I discuss coproducts in detail and sketch products and exponents
below. The initial object is formalised by the empty type, the morphism out of the initial
object is the empty function. Both do exist in pvs’s version of higher-order logic. In the
following I show how one can obtain coproducts.

The coproduct of two types can be formalised with the abstract datatype feature of
pvs, because in Set the coproduct of X and Y can be represented as the carrier of the
initial algebra for the (constant) functor X � //A+B .3 In order to define an abstract
data type in pvs one has to give its signature in a syntax similar to those of the theories
in pvs. For the coproduct this has the following form:

Coproduct[X, Y : Type] : Datatype % define Coproduct
Begin

in1(acc1 : X) : in1?
in2(acc2 : Y) : in2?

End Coproduct

When pvs processes this it defines a new parametric type Coproduct, a number of func-
tions, and some axioms that ensure that the type Coproduct[X,Y] is the carrier of the
initial algebra for the coproduct signature. In particular it defines two constructors

in1 : [ X −> Coproduct[X, Y]]
in2 : [ Y −> Coproduct[X, Y]]

that correspond to the injections κ1 and κ2. Additionally, there are two recogniser pred-
icates

in1?, in2? : [Coproduct[X, Y] −> boolean]

(In pvs identifiers can contain question marks.) The recognisers deliver true for an
inhabitant of Coproduct[A,B] precisely if it was built via the respective constructor. The
accessor functions acc1 and acc2 allow one to destruct an inhabitant of the coproduct
type. Naturally, the accessor acc1 can only be applied to inhabitants of Coproduct[A,B]
that have been built with the in1 constructor, similarly for acc2. The accessors get a
precise type using the predicate subtypes of pvs:

acc1: [( in1? ) −> X]
acc2: [( in2? ) −> Y]

3This seems circular but is not, because the functor can be represented without the coproduct as a
signature with two constructors.
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CoproductPair[X,Y,Z : Type] : Theory % define copairing
Begin

Importing Coproduct[X,Y]
f : Var [X −> Z]
g : Var [Y −> Z]

copair(f,g) : [Coproduct[X,Y] −> Z] =
Lambda(xy : Coproduct[X,Y]) : Cases xy OF

in1(x) : f(x),
in2(y) : g(y)

EndCases

copair char1 : Lemma
copair(f,g) o in1 = f And copair(f,g) o in2 = g

copair char2 : Lemma Forall( h : [Coproduct[X,Y] −> Z] ) :
h o in1 = f And h o in2 = g Implies h = copair(f,g)

End CoproductPair

Figure A.2.: Definition and properties of copairing in pvs (file base.pvs)

As next I define the copairing of two morphisms X
f //Z Y

goo . This construction is
parametric in the three objects X,Y, and Z, so it is placed in a theory with three type
parameters. The pvs source code is in Figure A.2.

The theory CoproductPair imports the datatype Coproduct with a concrete instan-
tiation. The fourth and the fifth line in Figure A.2 declare two variables f and g (of
functional type). In pvs variable declarations are syntactic sugar that can save a consid-
erable amount of source code. Without the variable declarations the definition of copair
would be

copair : [[[X −> Z], [Y −> Z]] −> [Coproduct[X,Y] −> Z]] =
Lambda( f : [X −> Z], g : [Y −> Z] ) :

Lambda( xy : Coproduct[X,Y] ) : Cases xy OF
. . .

In the definition of copair I use the Cases · · · OF · · · EndCases expression that is
provided to examine values of an abstract data type. Here, the value xy is matched
against the two constructor expressions and the matching branch yields the result.

The lemma copair char1 expresses that copair(f,g) makes Diagram 2.1 (from page 19)
commute. Lemma copair char2 proves that copair(f,g) is the unique function with this
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property. The variables f and g that occur free in both lemmas are implicitly universally
quantified. The infix operator o denotes function composition in pvs.

The coproduct of two morphisms is a construction that is parametric in four objects,
so it is placed in a separated theory with four type parameters U, V, X, and Y. With
two variable declarations the coproduct of morphisms is defined as follows (from now on
I skip the theory header and display only the relevant declarations and theorems):

f : Var [U −> X]
g : Var [V −> Y]
plus( f, g ) : [Coproduct[U,V] −> Coproduct[X,Y]] = copair( in1 o f, in2 o g )

In Set one can prove that the morphism f+g : U + V //X + Y does a case distinction:
If the argument comes from U then f is applied, otherwise g. In pvs the corresponding
theorem is

plus char : Lemma plus(f,g) =
Lambda( uv : Coproduct[U,V] ) : Cases uv OF

in1(u) : in1(f(u)),
in2(v) : in2(g(v))

EndCases

My definition of plus follows very closely the categorical definitions. However, the
decision procedures of pvs are tuned for element-wise computations, so they would
perform better if the property in the plus char lemma would be the definition for plus.
Still, I decided to follow in all definitions as closely as possible the original definitions
in category theory. This makes it much easier to check that the definitions are correct.
Most definitions are followed by an element-wise characterisation lemma like plus char
above. These characterisation lemmas can be used in proofs to improve the performance.

This completes the construction of finite coproducts in the category Bpvs. Let me
now sketch products and exponents. The tuple type of pvs forms a product in Bpvs. For
two types X and Y the tuple type is written with square brackets as [X, Y]. pvs provides
projections as special expressions. To get the projections as functions I use the following
theory:

Pi 12[ X, Y : Type] : Theory
Begin

pi 1( x : X, y : Y ) : X = x
pi 2( x : X, y : Y ) : Y = y

End Pi 12

The product of two functions is defined via pairing:

pair: [[[Z −> X], [Z −> Y]] −> [Z −> [X,Y]]] =
Lambda( f : [Z −> X], g : [Z −> Y] ) : Lambda( z : Z ) : (f(z), g(z))
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f : Var [U −> X]
g : Var [V −> Y]
times( f, g ) : [[U,V] −> [X,Y]] = pair(f o pi 1[U,V], g o pi 2[U,V])

Then one can prove

times char : Lemma
times( f, g ) = Lambda( uv : [U,V] ) : ( f(pi 1(uv)), g(pi 2(uv)) )

The built-in function type is the exponent in Bpvs. It is written as [X −> Y] for two
types X and Y. The constructions on morphisms are as follows (compare the description
of exponentials on page 19):

eval( f : [X −> Y], x : X ) : Y = f(x)

abstr( g : [[Z, X] −> Y] ) : [Z −> [X −> Y]] =
Lambda( z : Z ) : Lambda( x : X ) : g(z, x)

f : Var [V −> U]
g : Var [X −> Y]
=>( f, g ) : [[U −> X] −> [V −> Y]] = abstr(g o eval o times( id[[U−>X]], f) )

exp char : Lemma
(f => g) = Lambda(h : [U −> X]) : Lambda( v : V ) : g(h(f(v)))

The special syntax =>( f, g ) defines => as infix operator. The function id[[U−>X]] is
the identity function on the function space [U−>X].

This completes the cartesian closed structure of Bpvs. In addition the pvs sources
contain a formalisation of pullbacks (which I skip here).

For the predicate fibration the fibre over an object X ∈ |Bpvs| is represented by the
type PRED[X]. For the fibration of relations one takes PRED[[X,Y]]. The bicartesian
closed structure of an arbitrary fibre is defined in a theory with one type parameter X:

P,Q : Var PRED[X]

truth : PRED[X] = Lambda(x : X) : True;
falsehood : PRED[X] = Lambda(x : X) : False;

fib and( P, Q ) : PRED[X] = Lambda(x : X) : P(x) And Q(x)
fib or( P, Q ) : PRED[X] = Lambda(x : X) : P(x) OR Q(x)
fib exp( P, Q ) : PRED[X] = Lambda(x : X) : P(x) Implies Q(x)

(This and the following material is from file fibration.pvs.) The single fibres are
preorder categories (i.e., between any two predicates there is at most one morphism).
The morphisms are provable entailments; they are captured as follows

>>( P,Q ) : bool = Forall(x : X) : P(x) Implies Q(x)
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This defines the infix operator >> as relation on predicates such that P >> Q holds
precisely if there is a morphism P //Q in the fibre over X.

The definition of the substitution functor f∗ and its adjoints
∐

f and
∏

f requires
an additional type parameter Y:

f : Var [X −> Y]
star(f) : [PRED[Y] −> PRED[X]] = Lambda(Q : PRED[Y]) :

Lambda(x : X) : Q(f(x))

coprod(f) : [PRED[X] −> PRED[Y]] = Lambda(P : PRED[X]) :
Lambda(y : Y) : Exists(x : X) : P(x) And y = f(x)

prod(f) : [PRED[X] −> PRED[Y]] = Lambda(P : PRED[X]) :
Lambda(y : Y) : Forall(x : X) : y = f(x) Implies P(x)

That coprod and prod are indeed adjoints of star is proved by

left coprod : Lemma
P >> star(f)(Q) IFF coprod(f)(P) >> Q

right prod : Lemma
Q >> prod(f)(P) IFF star(f)(Q) >> P

These examples show how constructions and properties in the total category are translat-
ed to pvs: Every fibre, which is used, yields one type parameter (the object in the base).
Arbitrary objects from the fibres and morphisms from the base category are declared as
variables.

The next construction is the bicartesian closed structure in the total category of
predicates (again I use infix operators):

P : Var PRED[X]
Q : Var PRED[Y]

/\(P,Q) : PRED[[X,Y]] =
fib and( star(pi 1[X,Y])(P), star(pi 2[X,Y])(Q) )

\/(P,Q) : PRED[ Coproduct[X,Y] ] =
fib or( coprod(in1)(P), coprod(in2)(Q) )

=>(P,Q) : PRED[[X −> Y]] =
prod(pi 1[[X−>Y],X]) (fib exp( star(pi 2[[X−>Y],X])(P), star(eval)(Q)))

Note that here the infix operator => gets overloaded for predicates, very much the same
as ⇒ is used in the present thesis.
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To facilitate proofs there are the following characterisation lemmas:

pred prod char : Lemma (P /\ Q) =
Lambda( x : X, y : Y) : P(x) And Q(y)

pred coprod char : Lemma (P \/ Q) =
Lambda( x : Coproduct[X,Y] ) : Cases x OF

in1(y1) : P(y1),
in2(y2) : Q(y2)

EndCases

pred exp char : Lemma (P => Q) =
Lambda(f : [X −> Y]) : Forall(x : X) : P(x) Implies Q(f(x))

The bicartesian closed structure of relations is similarly easy to define, it only looks
a bit more complicated. For instance the following declarations define the exponent of
relations in a theory with four type parameters U, V, X, and Y:

S : Var PRED[[U,V]]
R : Var PRED[[X,Y]]

relexp( S, R ) : PRED[ [[U−>X], [V−>Y]] ] =
prod( times(pi 1[[U−>X], U], pi 1[[V−>Y], V]) )

(fib exp( star(times(pi 2[[U−>X], U], pi 2[[V−>Y], V]))(S),
star(times(eval[U,X],eval[V,Y]))(R)))

rel exp char : Lemma relexp( S, R ) = Lambda( f : [U−>X], g : [V −> Y] ) :
Forall(u : U, v : V) : S(u,v) Implies R(f(u), g(v))

With these definitions one can express already many Lemmas from Subsection 2.4.
For instance, in pvs Lemma 2.4.7 from page 43 (stating that truth preserves the bicarte-
sian structure) has the following form (see theory PredProps in file fibprops.pvs):

truth prod : Lemma (truth[X] /\ truth[Y]) = truth[[X,Y]]

truth coprod : Lemma (truth[X] \/ truth[Y]) = truth[Coproduct[X,Y]]

truth exp : Lemma (truth[X] => truth[Y]) = truth[[X −> Y]]

All three statements are proved by grind after applying extensionality. The more inter-
esting Lemma 2.4.17 (about cofibredness on page 47) is translated to pvs as follows (see
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theory FibProps):

f : Var [X −> U] % Note:
g : Var [Y −> V] % (f × g) : (X × Y) —> (U × V)
P : Var PRED[X] % (f + g) : (X + Y) —> (U + V)
Q : Var PRED[Y] % (V => f) : (V => X) —> (V => U)

cofibred product : Lemma
coprod( times(f,g) )( P /\ Q ) = ( coprod(f)(P) /\ coprod(g)(Q) )

cofibred coproduct : Lemma
coprod( plus(f,g) )( P \/ Q ) = ( coprod(f)(P) \/ coprod(g)(Q) )

const exp : Lemma
coprod( id[V] => f )( truth[V] => P ) = ( truth[V] => (coprod(f)(P)) )

The Lemmas 2.4.9 and 2.4.10 (on page 43f) state facts about intersection and union
over arbitrary collections of predicates. Assume that the predicates are predicates over
the type (or the object) Base and that the index set is given as a type Index. Then a collec-
tion of predicates (Pi ⊆ Base)i∈Index can be formalised as a function Index //PRED[Base] .
Intersection and union over such collections can be expressed with universal and exis-
tential quantification, respectively. This is done in theory Collection in file base.pvs.
The pvs source code is as follows (Base and Index are type parameters):

collection : Type = [Index −> PRED[Base]]

Coll and( c : collection ) : PRED[Base] = % intersection
Lambda( b : Base ) : Forall( i : Index ) : c(i)(b)

Coll or( c : collection ) : PRED[Base] = % union
Lambda( b : Base ) : Exists( i : Index ) : c(i)(b)

With these definitions Lemma 2.4.9 can be formalised in a theory with three type pa-
rameters X, Y, and Index. The first equation of 2.4.9 (1) looks as follows (see again theory
PredProps):

Pi : Var collection[X, Index]
Qi : Var collection[Y, Index]

coll and prod : Lemma
Coll and( Lambda( i : C ) : Pi(i) /\ Qi(i)) =

( Coll and(Pi) /\ Coll and(Qi) )

As next I show how the functor T from Example 3.3.8 (on page 88) is formalised in
pvs. The pvs source is in file t.pvs. The object part is captured by a type definition
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that is parametric in Y and X:

TIface : Type = [[X −> Y] −> X]

This way we have T (Y,X) = TIface[Y,X]. The morphism part is

f : Var [U −> X]
g : Var [Y −> V]

tf( g, f ) : [ TIface[V,U] −> TIface[Y,X] ] = ((f => g) => f)

(I omit the lemma t fun char that characterises tf as a λ–expression.) Now, the declara-
tions

c : Var [X −> TIface[X,X]]
d : Var [Y −> TIface[Y,Y]]

stand for two T–coalgebras: c on carrier X and d on Y. With the exponents of predicates
and relations it is straightforward to define T–invariants and bisimulations.4

P : Var PRED[X]
Q : Var PRED[Y]

PredT(Q,P) : PRED[TIface[Y,X]] = ((P => Q) => P)
T invariant?(c)(P) : bool = Forall( x : X ) : P(x) Implies PredT(P,P)(c(x))

S : Var PRED[[U,V]]
R : Var PRED[[X,Y]]

RelT(S,R) : PRED[ [TIface[U,X], TIface[V,Y]] ] = relexp(relexp(R,S), R)
T bisimulation?(c,d)(R) : bool = Forall(x : X, y : Y) :

R( x, y ) Implies RelT(R,R) ( c(x), d(y) )

The declaration T invariant? is a recogniser for T–invariants. Applied to a coalgebra c
and a predicate P it delivers true if and only if P is an invariant for c. Similarly for
T bisimulation?.

Figure A.3 shows the pvs sources for Example 3.3.8. The first two lines define A and
B as enumeration types with four elements.5 The rest of theory InterCounter is a literate
translation of Example 3.3.8. (Actually, it is the other way round: I first developed the
example in pvs and translated it later into LATEX.) The proofs in pvs are straightforward.

4The definition of T invariant uses PredT with an instantiation different from its definition. Therefore,
the definition of T invariant must stand in a different theory than the definition of PredT. I ignore
these technical issues here.

5Enumeration types are syntactic sugar in pvs. They are mapped to an abstract datatype declaration
with constant constructors.
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InterCounter : Theory
Begin

A : Type = { a1, a2, a3, a4 }
B : Type = { b1, b2, b3, b4 }

f : [A −> A] = Lambda(a:A) : IF a = a1 Then a1 Else a4 Endif
g : [B −> B] = Lambda(b:B) : IF b = b1 Then b1 Else b4 Endif

Importing TMorph

c : [A −> TIface[A,A]] = Lambda(a:A) :
Lambda(h : [A −> A]) : IF h = f Then a4 Else a1 Endif

d : [B −> TIface[B,B]] = Lambda(b:B) :
Lambda(k : [B −> B]) : IF k = g Then b4 Else b1 Endif

R : PRED[[A,B]] = Lambda( a : A, b : B ) :
(a=a1 And b=b1) OR (a=a2 And b=b2)

S : PRED[[A,B]] = Lambda( a : A, b : B ) :
(a=a1 And b=b1) OR (a=a3 And b=b3)

R bisim : Lemma T bisimulation?(c,d)(R)
S bisim : Lemma T bisimulation?(c,d)(S)

RS bisim : Lemma Not T bisimulation?(c,d)( fib and(R,S) )

% now turn to invariants: use first projections of R and S from above
P : PRED[A] = Lambda( a : A ) : a=a1 OR a=a2
Q : PRED[A] = Lambda( a : A ) : a=a1 OR a=a3

pq proj : Lemma
( P = coprod(pi 1)(R) ) And ( Q = coprod(pi 1)(S) )

Importing TInvariant

P inv : Lemma T invariant?(c)(P)
Q inv : Lemma T invariant?(c)(Q)

PQ inv : Lemma Not T invariant?(c)( fib and(P,Q) )
End InterCounter

Figure A.3.: pvs code for Example 3.3.8: The intersection of two T–bisimulations (in-
variants) is not a bisimulation (invariant) (file intersection.pvs).
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As a last example I sketch the formalisation of Proposition 3.4.20 (about the equiva-
lence of Aczel/Mendler and Hermida/Jacobs bisimulation on page 102). The pvs sources
are from file aczel.pvs. The proof of this proposition proceeds by induction on the struc-
ture of the functor. As explained before, the induction itself cannot be formalised, but
the induction steps can. First one has to formalise the following two inductive properties
(copied from page 102 for convenience):

∀x ∈ G(X,X), y ∈ G(Y, Y ), r ∈ G(R,R) .

G(R,π1)(r) = G(π1, X)(x) and G(R, π2)(r) = G(π2, Y )(y) (A.1)

implies Rel(G)(R,R)(x, y)

∀x ∈ G(X,X), y ∈ G(Y, Y ),

Rel(G)(R,R)(x, y) implies ∃r ∈ G(R,R) . (A.2)

G(R, π1)(r) = G(π1, X)(x) and G(R, π2)(r) = G(π2, Y )(y)

These two properties use both the object part and the morphism part of G. Consider the
term G(R, π1)(r) that occurs in (A.1). In the different induction steps one has to use a
different type for r: In the induction step forG1×G2 it is of product type, while in the step
for G1 ⇒ G2 it is of function type. In the same way the induction steps use different func-
tions for G(R, π1). Therefore I decided to abstract away all functor applications (both to
objects and to morphisms) from the properties (A.1) and (A.2). For the object G(X,X)
I substitute by the type TXX, for the object G(R,R) the type TRR, and so on. The same
happens for functions: for instanceG(R, π1) becomes TRpi 1 : [TRR −> TRX]. The pred-
icate lifting Rel(G)(R,R) becomes the predicate RelT : PRED[[TXX,TYY]]. With this
translation the two properties read as follows:

ast property : bool =
Forall(xx : TXX, yy : TYY) : Forall(r : TRR) :

TRpi 1(r) = Tpi 1X(xx) And TRpi 2(r) = Tpi 2Y(yy)
Implies RelT( xx, yy )

dagger property : bool =
Forall(xx : TXX, yy : TYY) : RelT(xx,yy) Implies

Exists(rr : TRR) :
Tpi 1X(xx) = TRpi 1(rr) And
Tpi 2Y(yy) = TRpi 2(rr)

I further decided to declare all the abstracted items (i.e., all the TXX, TRpi 1, . . . ) as the-
ory parameters. For symmetry I add the two types TXR and TYR standing for G(X,R)
and G(Y,R) (which would not be needed to express the two properties). I also complete
the functions and add the missing projections, like for instance TXpi 1 : [TXR −> TXX],
which stands for G(X, π1). This makes altogether seven type parameters and nine value

273



A. Guide to the PVS Sources

parameters for the theory InductionProperties that contains the definitions of ast property
and dagger property:

InductionProperties[TXX, TYY, TRR, TXR, TYR, TRX, TRY : Type,
RelT : PRED[[TXX,TYY]],
TXpi 1 : [TXR −> TXX], Tpi 1R : [TXR −> TRR],
Tpi 1X : [TXX −> TRX], TRpi 1 : [TRR −> TRX],
TYpi 2 : [TYR −> TYY], Tpi 2R : [TYR −> TRR],
Tpi 2Y : [TYY −> TRY], TRpi 2 : [TRR −> TRY]

] : Theory

A basic property that holds for functors is that

G(π1, X) ◦ G(X, π1) = G(π1, π1) = G(R, π1) ◦ G(π1, R) (A.3)

(and similarly for the second projection). Therefore I add the following assuming clause
to the theory InductionProperties:

Assuming
pi 1 commutes : Assumption Tpi 1X o TXpi 1 = TRpi 1 o Tpi 1R
pi 2 commutes : Assumption Tpi 2Y o TYpi 2 = TRpi 2 o Tpi 2R

Endassuming

Inside of theory InductionProperties the two assumptions have the status of axioms: One
can use them in proofs without the requirement to prove the assumptions themselves.
From the outside the assumptions appear as additional properties that are required for
all instantiations. For every use of the theory InductionProperties the user has to prove
two type correctness conditions. The two TCC’s are generated from the two assumptions
by substituting the actual theory instantiations for the parameters.

The next step in the proof of Proposition 3.4.20 is the induction that shows that the
two properties (A.1) and (A.2) hold for all extended polynomial functors. Consider the
case G(Y,X) = A for a constant set A. For the proof in pvs one has to instantiate the 16
parameters of InductionProperties appropriately. All the type parameters are instantiated
by A, because G(X,X) = A. The relation lifting RelT is instantiated with the equality
relation over A. Finally, all the functions are instantiated with the identity function,
because G(f, g) = idA. The theory that formalises the case G(Y,X) = A is

Const[ A : Type] : Theory % G(Y,X) = A (constant)
Begin

Importing InductionProperties[A,A,A,A,A,A,A, equality[A],
id[A],id[A],id[A],id[A],id[A],id[A],id[A],id[A] ]

ast const : Lemma ast property
dagger const : Lemma dagger property

End Const
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The proofs of the two lemmas ast const and dagger const is trivial. Also the two TCC’s
that are generated for the importing are easy.

The induction step for the case G(Y,X) = G1(Y,X)×G2(Y,X) is much more com-
plicated. It is formalised in the theory Prod in Figure A.4. In the induction step we
need to assume that the properties (A.1) and (A.2) hold for both G1 and G2. I solve
this by two sets of theory parameters, one for G1 and one for G2. The parameters for
G1 are called T1XX, RelT1, T1Rpi 1, and so on. For G2 they are T2XX, RelT2, T2Rpi 1.
Of course I need now assumptions that state the Equation (A.3) for G1 and G2. This
explains the first 20 lines of Figure A.1.

The lemma ast prod in theory Prod assumes that the ast property holds for the type
parameters that simulate G1 and for those that simulate G2. It then states on line 31
that the property also holds for an instantiation of ast property that simulates G1 ×
G2. This latter instantiation is straightforward, for instance G(X,X) = G1(X,X) ×
G2(X,X) accounts for the first argument [T1XX, T2XX] on line 31. And fromG(π1, X) =
G1(π1, X)×G2(π1, X) it follows the first argument times(T1pi 1X, T2pi 1X) on line 35.
The theory Prod contains a similar lemma dagger prod for A.2.

The induction step for coproduct is very similar to what I just showed. The induction
step for the exponent G(Y,X) = G1(A, Y ) ⇒ G2(Y,X) shows two interesting points.
The first one is that the restriction of extended polynomial functors must appear there
somehow. It turned out that for the completion of the proofs it is enough to exploit the
fact that some of the functions that stand for the action of G1 are always bijections (be-
cause they collapse to identities). Let T (X, Y ) = G1(A, Y ) (for an extended polynomial
functor G1) then T (π1, R) = idG1(A,R) is clearly bijective. In the theory for the induction
step I have therefore the additional assumption

polynomial : Assumption
bijective?(T1pi 1R) and bijective?(T1pi 1X) and
bijective?(T1pi 2Y) and bijective?(T1pi 2R)

The second interesting point is that in the assumptions for G1 one has to exchange the
inductive properties: In order to prove ast property for G1 ⇒ G2 one has to assume
dagger property for G1 and ast property for G2.

This finishes the formalisation of the induction for extended polynomial functors.
The pvs source code contains an additional theory that proves that the two inductive
properties (A.1) and (A.2) do indeed imply Proposition 3.4.20. I would like to skip this
material here.

I should note that in the development of the proof that I just described the pvs
formalisation was extremely valuable. The attempt the formalise the induction steps
in pvs invalidated two proofs that have been traditionally developed with pencil and
paper. Further, the careful investigation of the proof goals that I got without the pre-
ceding assumption polynomial lead to the discovery of the Examples 3.3.11 and 3.3.12
(on page 91ff).
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Prod[ T1XX, T1YY, T1RR, T1XR, T1YR, T1RX, T1RY : Type, % parameters for G1
RelT1 : PRED[[T1XX,T1YY]],
T1Xpi 1 : [T1XR −> T1XX], T1pi 1R : [T1XR −> T1RR],
T1pi 1X : [T1XX −> T1RX], T1Rpi 1 : [T1RR −> T1RX],
T1Ypi 2 : [T1YR −> T1YY], T1pi 2R : [T1YR −> T1RR], 5

T1pi 2Y : [T1YY −> T1RY], T1Rpi 2 : [T1RR −> T1RY],

T2XX, T2YY, T2RR, T2XR, T2YR, T2RX, T2RY : Type, % parameters for G2
RelT2 : PRED[[T2XX,T2YY]],
T2Xpi 1 : [T2XR −> T2XX], T2pi 1R : [T2XR −> T2RR],
T2pi 1X : [T2XX −> T2RX], T2Rpi 1 : [T2RR −> T2RX], 10

T2Ypi 2 : [T2YR −> T2YY], T2pi 2R : [T2YR −> T2RR],
T2pi 2Y : [T2YY −> T2RY], T2Rpi 2 : [T2RR −> T2RY]
] : Theory

Begin
Assuming 15

T1pi 1 commutes : Assumption T1pi 1X o T1Xpi 1 = T1Rpi 1 o T1pi 1R
T1pi 2 commutes : Assumption T1pi 2Y o T1Ypi 2 = T1Rpi 2 o T1pi 2R
T2pi 1 commutes : Assumption T2pi 1X o T2Xpi 1 = T2Rpi 1 o T2pi 1R
T2pi 2 commutes : Assumption T2pi 2Y o T2Ypi 2 = T2Rpi 2 o T2pi 2R

Endassuming 20

Importing InductionProperties

ast prod : Lemma
ast property[T1XX, T1YY, T1RR, T1XR, T1YR, T1RX, T1RY, RelT1,

T1Xpi 1, T1pi 1R, T1pi 1X, T1Rpi 1,
T1Ypi 2, T1pi 2R, T1pi 2Y, T1Rpi 2] 25

And
ast property[T2XX, T2YY, T2RR, T2XR, T2YR, T2RX, T2RY, RelT2,

T2Xpi 1, T2pi 1R, T2pi 1X, T2Rpi 1,
T2Ypi 2, T2pi 2R, T2pi 2Y, T2Rpi 2]

Implies 30

ast property[[T1XX,T2XX], [T1YY,T2YY], [T1RR,T2RR], [T1XR,T2XR],
[T1YR,T2YR], [T1RX,T2RX], [T1RY,T2RY],
relprod(RelT1,RelT2),
times(T1Xpi 1, T2Xpi 1), times(T1pi 1R, T2pi 1R),
times(T1pi 1X, T2pi 1X), times(T1Rpi 1, T2Rpi 1), 35

times(T1Ypi 2, T2Ypi 2), times(T1pi 2R, T2pi 2R),
times(T1pi 2Y, T2pi 2Y), times(T1Rpi 2, T2Rpi 2)]

Figure A.4.: pvs code for the induction step G(Y,X) = G1(Y,X) × G2(Y,X) of the
proof of Proposition 3.4.20 (file aczel.pvs).
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This section presented a few examples from the pvs formalisation of Section 2.4
and Chapter 3. The translation of fibred category theory follows the simple approach
of translating objects and morphisms (in the base) to types and functions (in pvs),
respectively. The preceding examples of pvs source code show that with this approach
one can express and prove a lot of important properties in pvs in a very natural way.
Properties that involve a quantification over a class of functors cannot be modelled.
However, the last pages show that, with some experience in pvs, it is possible to formalise
substantial parts of the proofs of such properties.

A.2. Contents of the PVS Formalisation

The following tables relates the examples and results of the present thesis with the
theorems and theories of the pvs source.

Lemma / Location in the pvs sources

Example file theory lemma

2.4.5 (1) fibprops PredProps mon prod, mon coprod, mon exp

2.4.5 (2) fibprops RelProps mon prod, mon coprod, mon exp

2.4.6 (1) fibrations Bc, BCRel bc, bc rel

2.4.6 (2) fibrations Frobenius, frobenius

FrobeniusRel frobenius rel

2.4.7 fibprops PredProps truth prod, truth coprod, truth exp

2.4.8 fibprops RelProps eq prod, eq coprod, eq exp

2.4.9 (1) fibprops PredProps coll and prod, coll and coprod,
coll and exp pol, coll and exp

2.4.9 (2) fibprops RelProps coll and prod, coll and coprod,
coll and exp pol, coll and exp

2.4.10 (1) fibprops PredProps coll or prod, coll or coprod,
coll or exp pol

2.4.10 (2) fibprops RelProps coll or prod, coll or coprod,
coll or exp pol

2.4.11 fibprops RelPropsOp op prod, op coprod, op exp

2.4.12 fibprops RelProps comp prod, comp coprod,
comp exp pol, comp exp left
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Lemma / Location in the pvs sources

Example file theory lemma

2.4.13 fibprops BisimProjProp times, sum, exp pol, exp left

2.4.14 fibprops CapInvProp times, sum, exp, exp pol,
exp nonempty

2.4.15 (1) fibprops FibProps fibred product, fibred coproduct,
fibred exp

2.4.15 (2) fibprops FibRel rel prod fib, rel coprod fib,
rel exp fib

2.4.16 exp ExpCounter2

2.4.17 (1) fibprops FibProps cofibred product,
cofibred coproduct

2.4.17 (1) fibprops CofibRel rel prod cofib, rel coprod cofib

2.4.17 (2) fibprops FibProps const exp1

2.4.17 (3) fibprops CofibRel rel exp cofib1

Eq. 2.7 fibrations PredCont graf, graf2

Eq. 2.7 fibrations BCfor graph

Eq. 3.1 per PerUnion percl rel exp pol coll

3.3.7 (1) intersection InterCounter

3.3.7 (1) union UnionBisim

3.3.7 (2) relcomp BisimComp

3.3.7 (3) graph GraphCounter

3.3.7 (4) image morph Image Morph counter

3.3.7 (5) mendler counter

3.3.7 (6) inv-char InvCharCounter

3.3.7 (7) invariant BisimProjCounter

3.3.7 (8) invariant BisimCapInvCounter

3.3.7 (9) kernel KernelCounter
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Lemma / Location in the pvs sources

Example file theory lemma

3.3.8 t

3.3.8 intersection InterCounter

3.3.9 union UnionBisim

3.3.11 aczel counter3 Fun not T

3.3.12 aczel counter3 Bisim not T

3.4.10 invariant BisimProj bisim proj const, bisim proj id,
bisim proj times, bisim proj plus,
bisim proj exp, bisim proj exp epf

3.4.12 invariant BisimProjCounter

3.4.13 invariant BisimCapInv bisim cap inv const,
bisim cap inv id,
bisim cap inv prod,
bisim cap inv coprod,
bisim cap inv exp,
bisim cap inv exp epf

3.4.15 invariant BisimCapInvCounter

3.4.17 image morph Image Morph counter

3.4.19 inv–char InvCharCounter

3.4.20 aczel

3.4.29 per PReflexive prefl union

3.5.2 (1) per PerLift per eq, per sum, per prod, per exp

3.5.3 per DomainLift domain sum, domain prod,
domain exp pol

3.5.4 (1) per PerLift per cl sum

3.5.4 (2) per PerLift per cl prod

3.5.5 (1) per PerUnion percl rel prod coll

3.5.5 (2) per PerUnion percl rel sum coll

Eq. 3.1 per PerUnion percl rel exp pol coll
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Lemma / Location in the pvs sources

Example file theory lemma

3.5.8 per extended

3.5.10 perlift counter PerBisimCounter2

3.6.1 union KNoFinal

3.7.1 (1) rellist PredList predlist mon

3.7.1 (1) rellist RelList rellist mon

3.7.1 (2) rellist FibPredList, FibRelList

3.7.1 (3) rellist PredListProps, RelListProps, CapInvProj

3.7.1 (4) rellist RelListPer

4.2.2 (1) variance Variance join well, subst well

4.2.2 (2) variance Variance subst comm, subst asso, subst zero

4.2.2 (3) variance Variance join comm, join asso, join id

4.2.2 (4) variance Variance distrib

4.4.6 Queue model QueueModel

4.5.10 Queue model QueueModal
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B. The CCSL Grammar

This appendix contains the complete ccsl grammar. It is given in a BNF–like notation.
Brackets [ . . . ] denote optional components, braces {|. . . |} denote arbitrary repetition
(including zero times), and parenthesis ( . . . ) denote grouping. Terminals are set in
UPPERCASE TYPEWRITER, non–terminals in lowercase slanted. The terminal symbols for
parenthesis and brackets are written as (, ), [, and ].

file ::= {| declaration |} EOF

declaration ::= classspec
| adtspec
| groundsignature
| typedef
| groundtermdef

classspec ::= BEGIN identifier [ parameterlist ] :
[ FINAL ] CLASSSPEC
{| importing |} {| classsection |}
END identifier

parameterlist ::= [ parameters {| , parameters |} ]

parameters ::= identifier {| , identifier |} : [ variance ] TYPE

variance ::= POS

| NEG

| MIXED

| ( numberorquestion , numberorquestion )

numberorquestion ::= ?

| number

classsection ::= inheritsection
| [ visibility ] attributesection [ ; ]
| [ visibility ] methodsection [ ; ]
| definitionsection
| classconstructorsection [ ; ]
| assertionsection
| creationsection
| theoremsection
| requestsection [ ; ]

281



B. The CCSL Grammar

visibility ::= PUBLIC

| PRIVATE

inheritsection ::= INHERIT FROM ancestor {| , ancestor |}
ancestor ::= identifier [ argumentlist ]

[ RENAMING renaming {| AND renaming |} ]

renaming ::= identifier AS identifier

attributesection ::= ATTRIBUTE member {| ; member |}
methodsection ::= METHOD member {| ; member |}
member ::= identifier : type -> type

definitionsection ::= DEFINING member formula ; {| member formula ; |}
classconstructorsection ::= CONSTRUCTOR classconstructor {| ; classconstructor |}
classconstructor ::= identifier : type

| identifier : type -> type

assertionsection ::= ASSERTION {| importing |}
[ assertionselfvar ] {| freevarlist |}
namedformula {| namedformula |}

assertionselfvar ::= SELFVAR identifier : SELF

freevarlist ::= VAR vardecl {| ; vardecl |}
creationsection ::= CREATION {| importing |} {| freevarlist |}

namedformula {| namedformula |}
namedformula ::= identifier : formula ;

requestsection ::= REQUEST request {| ; request |}
request ::= identifier : type

theoremsection ::= THEOREM {| importing |} {|
freevarlist |} namedformula {| namedformula |}

formula ::= FORALL ( vardecl {| , vardecl |} ) ( : | . ) formula
| EXISTS ( vardecl {| , vardecl |} ) ( : | . ) formula
| LAMBDA ( vardecl {| , vardecl |} ) ( : | . ) formula
| LET binding {| ( ; | , ) binding |} [ ; | , ] IN formula
| formula IFF formula
| formula IMPLIES formula
| formula OR formula
| formula AND formula
| IF formula THEN formula ELSE formula
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| NOT formula
| formula infix operator formula
| ALWAYS formula FOR

[ identifier [ argumentlist ] :: ] methodlist
| EVENTUALLY formula FOR

[ identifier [ argumentlist ] :: ] methodlist
| CASES formula OF caselist [ ; | , ] ENDCASES
| formula WITH [ update {| , update |} ]

| formula . qualifiedid
| formula formula
| TRUE

| FALSE

| PROJ N

| number
| qualifiedid
| ( formula : type )

| ( formula {| , formula |} )

vardecl ::= identifier {| , identifier |} : type

methodlist ::= { identifier {| , identifier |} }
qualifiedid ::= idorinfix

| identifier [ argumentlist ] :: idorinfix

idorinfix ::= ( infix operator )

| identifier

binding ::= identifier [ : type ] = formula

caselist ::= pattern : formula {| ( ; | , ) pattern : formula |}
pattern ::= identifier [ ( identifier {| , identifier |} ) ]

update ::= formula := formula

adtspec ::= BEGIN identifier [ parameterlist ] : ADT

{| adtsection |}
END identifier

adtsection ::= adtconstructorlist [ ; ]

adtconstructorlist ::= CONSTRUCTOR adtconstructor {| ; adtconstructor |}
adtconstructor ::= identifier [ adtaccessors ] : type

| identifier [ adtaccessors ] : type -> type

adtaccessors ::= ( identifier {| , identifier |} )
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groundsignature ::= BEGIN identifier [ parameterlist ] : GROUNDSIGNATURE

{| importing |} {| signaturesection |}
END identifier

signaturesection ::= typedef
| signaturesymbolsection [ ; ]

signaturesymbolsection ::= CONSTANT termdef {| ; termdef |}
typedef ::= TYPE identifier [ parameterlist ] [ = type ]

groundtermdef ::= CONSTANT termdef [ ; ]

termdef ::= idorinfix [ parameterlist ] : type [ formula ]

type ::= SELF

| CARRIER

| BOOL

| [ type {| , type |} -> type ]

| [ type {| , type |} ]

| qualifiedid
| identifier argumentlist

argumentlist ::= [ type {| , type |} ]

importing ::= IMPORTING identifier [ argumentlist ]

CCSL Keywords

The following words are reserved.

adt always and as assertion
attribute begin bool carrier cases
classspec constant constructor creation defining
else end endcases eventually exists
false final for forall from
groundsignature if iff implies importing
in inherit lambda let method
mixed neg not of or
pos private public renaming request
self selfvar then theorem true
type var with
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Include Directive

The include directive has the following form:

include ::= #include "string"

The string is interpreted as a file name. The compiler substitutes the contents of the file
for the include directive. The directive can stand at any place in the input.
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Notation Index

The notation index is split into six parts: (1) the index for derivation rules, (2) the index
of logical entailments, (3) the index of fibrations, (4) the index of symbols based on the
Greek alphabet, (5) the index of symbols based on the Latin alphabet (on page 300),
and (6) the index of other symbols (on page 302).

Rule Index

premise1 · · · premisen

conclusion
— derivation rule, 20

s1

s2
— equivalence; abbreviation for

s1
s2

and
s2
s1

, 29

Entailment Index

Γ | ϕ ` ψ — logical entailment in simply typed predicate logic, 27
` k : Kind — kind judgement, 126
Ξ ` τ : k — type judgement, 127

` C : [v1, . . . , vk] — type constructor with variance annotation, 135
αi :: vi, Self :: v ` τ : Type — type judgement with variance annotation, 135

Γ ` t : σ — term judgement in a simple type theory, 21
Ξ | Γ ` t : τ — term judgement, 164
` τ : Type — type judgement in a simple type theory, 20

Γ : ϕ ` Prop — well-formed formula, 27

Fibration Index

E
↓p
B

— arbitrary fibration, 24

L
↓
C̀ — fibration of the logic, 28

Pred
↓

Set
— predicate fibration, 35
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Notation Index

Rel(E)
↓

B×B — fibrations of relations in E, 34

Rel
↓

Set×Set
— fibration of relations, 38

Greek Symbols

α, β — type variables, 126
∆ — diagonal functor, 18
δ — diagonal, 41
ε — counit of an adjunction, 17
η — unit of an adjunction, 17

η : F +3G — natural transformation, 16
Γ,∆ — contexts, 21
κ1, κ2 — coproduct injections, 18, 165

κc — interpretation injection, 153
λf — adjoint transpose for the exponent, 19

λx : X . f(x) — λ–abstraction in Set, 19
λx : σ . t — λ–abstraction as term, 165

Ω — ground signature, 144
ω — first limit ordinal, 242
|Ω| — set of type constructors in Ω, 144
ΩP — ground signature for the ccsl prelude, 144
ϕ, ψ — formulae, 27, 166
π1, π2 — product projections, 18, 165
πm — interpretation projection, 153
πΣ′ — subsignature projection, 154
Σ — class signature, 150

Σ′ ≤ Σ — subsignature, 150
σΣ — combined constructor type of Σ, 151
ΣC — class signature, constructor declarations, 150
ΣM — class signature, method declarations, 150
τ, σ — types, 20, types, 126, 127
τΣ — combined method type of Σ, 151
Ξ — type variable context, 127

Latin Symbols

Alg(T ) — Category of T–Algebras, 52
C — set of type constructors, 127
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C — type constructor, 127
C — category, 14
|C| — objects of C, 14

C(X,Y) — homset — class of morphisms from X to Y , 14
Cop — opposite category, 15

cases t of κ1 x : r, κ2 y : s — case analyses, 165
Cat — Category of categories and functors, 16
C̀ — classifying category, 23

CoAlg(T ) — category of T–coalgebras, 55
cons — list constructor, 51

coreduce — unique morphism into the final coalgebra, 201
EI — fibre over I, 23

Eu(X, Y ) — morphisms over u, 24
Eq — equality, 41

evalX,Y — evaluation morphism for X ⇒ Y , 19
F a G — adjunction; F is left adjoint to G, 17

F (f,X) — abbreviation for F (f, idX), 16
[f, g] — copairing or case analyses, 19
f ◦ g — composition of morphisms, 14
〈f, g〉 — pairing, 18
f, g — morphisms in a category, 14

f : X //Y — morphism in a category, 14
f−1 — inverse isomorphism, 14

f∧, f∨ — adjoint transpose, 17
Form(Σ) — formulae over Σ, 166

g ◦ f — composition of morphisms, 14
GF — composition of functors, 16
I, J — objects in a base category, 23
IdC — identity functor, 16
idX — identity morphism, 14

if r then s else t — conditional, 165
k — kind, 126
K — type constant, 127
L — classifying category for a logic, 28

List[A] — abstract data type of lists, 50
M — model of a class signature, 152
N — natural numbers, 16
N? — extended natural numbers, 133
nil — the empty list, 51
P — least invariant containing P , 67
P — greatest invariant contained in P , 67
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Notation Index

P x — P holds for x, 36
P,Q — predicates, 36

(P ⊆ X) — predicate over X, 36
Pred(H) — predicate lifting, 83

Pred(JτK) — (full) predicate lifting, 155
PredC — predicate lifting of C, 144
Pred — category of predicates, 35
Prop — type of formulae, 27, 127, 164
R — least partial equivalence relation containing R, 109

(R ⊆ X × Y ) — relation between X and Y , 38
Rop — opposite relation, 41

reduce — unique morphism from the initial algebra, 195
Rel(E) — category of relations in E, 34
Rel(H) — relation lifting, 83

Rel(JτK) — (full) relation lifting, 155
RelC — relation lifting of C, 144
Rel — category of relations, 38

SRel(Pred) — category of single carrier binary relations, 39
s, t — terms, 21

S ′ ≤ S — subspecification, 179
Self — special type, 127

Seq[A] — behavioural type of sequences, 54
Set — the category of sets and total functions, 14

(t1, t2) — pair, 165
t[s/x] — substitution of s for x in t, 22
TC — constructor type extraction, 151
TM — method type extraction, 151

Terms(Σ) — terms over Σ, 165
Type — kind of types, 126
u∗ — substitution functor along u, 24
û — cartesian lifting of u, 24
V — set of variances, 134
V — well-formed variances, 134

X ∼= Y — isomorphic objects, 14
X, Y — objects in a category, 14
x, y — variables, 21

Other Symbols

? — unknown variance, 133
{−} — comprehension, 38
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!X — unique morphism into the final object, 18
! — unique functor into 1, 18

X
f //Y — morphism (or function) from X to Y , 13, 14

X /Y — partial function from X to Y , 145
X ___ //Y — unique morphism (or function) from X to Y , 16

f ◦ g — composition of morphisms, 14
∗ — only inhabitant of 1, 165

c↔ d — bisimilarity for c and d, 63
↔M — bisimilarity on M, 158
⊥ — false, term of type Prop, 165

⊥X — falsehood, initial object in the fibre over X, 38
�MP — infinitary modal operator always, 174
♦MP — infinitary modal operator eventually, 175
− · − — substitution operation for variances, 134

∃x : τ . t — existential quantification, 166
F ` G — F entails G, 14

∀x : τ . t — universal quantification, 165
⊃⊂ — logical equivalence, 166∐

u — coproduct functor along u, 26∏
u — product functor along u, 26

λ→ — polymorphic type theory, 125
σ ≤ τ — subtype relation, 211

J−K — interpretation mapping, 37
JτK – for types, 139
JCK – for type constructors, 139
JfK – for ground signature symbols, 146
JmKM – for methods or constructors, 154
J�MP KA – for modal operators, 176
JtKMΩ,MΣ – for terms, 169

¬t — negation, 165
t1 ∼ t2 — behavioural equality, 165

> — true, term of type Prop, 165
>X — truth, final object in the fibre over X, 38
] — disjoint union of sets, 20
∨ — join operation for variances, 134
0 — initial object, 18

– empty type, 127
1 — final object, 18

– truth functor, 38
– unit type, 20, 127

1 — final category, 18
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Notation Index

× — categorical product
X × Y – in an arbitrary category, 18
f × g – product of morphisms, 18
C×D – product category, 15
P ×PQ – product in Pred, 38
R×R S – product in Rel, 40
σ × τ – product of types, 20, 127

+ — categorical coproduct
X + Y – coproduct of two objects, 18
f + g – coproduct on morphisms, 19
P +PQ – coproduct in Pred, 38
R+R S – coproduct in Rel, 40
σ + τ – coproduct of types, 127

⇒ — categorical exponent
X ⇒ Y – exponent of objects, 19
f ⇒ g – exponent of morphisms, 19
P ⇒PQ – exponent in Pred, 38
R⇒R S – exponent in Rel, 40
σ ⇒ τ – exponent of types, 20, 127

∧ — product in a preorder category
– in an arbitrary fibre, 27
– fibred product in Pred, 36
– conjunction of terms, 165
– fibred product in Rel, 39∧

— fibred product over collections
– in Pred, 37
– in Rel, 39

∨ — coproduct in a preorder category
– in an arbitrary fibre, 27
– fibred coproduct in Pred, 36
– disjunction of term, 165
– fibred coproduct in Rel, 39∨

— fibred coproduct over collections
– in Pred, 37
– in Rel, 39

⊃ — exponent in a preorder category
– in an arbitrary fibre, 27
– fibred exponent in Pred, 36
– fibred exponent in Rel, 39
– logical implication, 166
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Subject Index

Entries in UPPERCASE TYPEWRITER are ccsl keywords. Entries in slanted are meta sym-
bols. For both kinds of entries page numbers smaller than 281 refer into Chapter 4, larger
page numbers refer into Appendix B with the full ccsl grammar.

A
above, 23
abstract data type, 7, 52, 56, 121, 180,

217, 218, 255, 264
in ccsl, 187, 194

abstract state machine, 240
accessor function, 145, 264

in ccsl, 188, 197
adjoint transpose, 17
adjunction, 17
ADT, 187, 283
adtaccessors, 188, 283
adtconstructor, 188, 283
adtconstructorlist, 188, 283
adtsection, 188, 283
adtspec, 187, 283
algebra, 1, 51, 50–53, 152

initial, 52, 187, 194, 264
morphism, 52

algebraic specification, 1, 50, 122, 187,
254, 255

alpha–conversion, 22
ALWAYS, 181, 283
always, modal operator, 95, 105, 118, 173

in ccsl, 174
ancestor, 210
ancestor, 210, 282
AND, 181, 210, 282
arbitrary, 146, 190
argumentlist, 129, 284
arity, 126
arrow, 14
AS, 210, 282

ASSERTION, 182, 282
assertionsection, 182, 282
assertionselfvar, 182, 282
association, 239
ATTRIBUTE, 160, 282
attributesection, 160, 282
Axiom of Choice, 18, 25, 35, 44, 45, 47,

102

B
base category, 23
base for two bisimulations, 107
Beck–Chevalley condition, 29, 35, 42
BEGIN, 147, 158, 187, 281, 283, 284
behavioural equality, 143

in ccsl, 165
behavioural model, 231
behavioural type, 68
behaviourally invariant, 170, 177, 179,

206, 225, 247
beta–conversion, 22
bicartesian closed category, 19
bifibration, 25
binary method, 1, 5, 10, 53, 57, 74, 92,

104, 115, 117, 143, 193, 255
binding, 181, 283
bisimilarity, 63, 116, 158, 163, 166, 170,

171, 173, 220
bisimulation, 2, 57–67, 71, 82–93, 96–104,

106–115, 147, 154–158, 163, 170,
182, 203, 207, 220, 271, 273

Aczel/Mendler
for h.-o. pol. functors, 90
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for pol. functors, 61
equivalence, 109
Hermida/Jacobs

for h.-o. pol. functors, 85
for pol. functors, 60

in ccsl, 158
partial - equivalence, 109
recogniser, 182, 203, 228

BOOL, 129, 284
bot, 145
bot?, 145
bound variable, 22

C
car, 145
CARRIER, 129, 284
cartesian closed category, 19
cartesian functor, 108
cartesian morphism, 24

in Pred, 36
in Rel, 40

cartesian product of sets, 19
caselist, 181, 283
CASES, 181, 283
category, 4, 14

base -, 23
bicartesian closed -, 19
cartesian closed -, 19
classifying -, 23
locally small -, 14
of algebras, 52
of class signatures models, 152
of coalgebras

for h.-o. pol. functors, 80
for pol. functors, 55

of predicates, 35
of relations, 38
of sets and total functions, 14
preorder -, 14
product -, 15
small, 14
total -, 23

ccsl compiler, 122
ccsl prelude, 144, 147, 223
cdr, 145
change of base, 34
class signature, 3, 150
class specification, 3, 178
classconstructor, 160, 282
classconstructorsection, 160, 282
classifying category, 23
classsection, 158, 281
CLASSSPEC, 158, 281
classspec, 158, 281
closed term, 21
cloven, 24, 26
coalgebra, 1–312

final -, 68, 115
finitely based, 115
for h.-o. pol. functors, 80
for pol. functors, 55
morphism, 3

for h.-o. pol. functors, 80
for pol. functors, 55

coalgebraic class signature, 3, 150
coalgebraic class specification, 3, 178
cocartesian morphism, 25

in Pred, 36
codomain, 14
cofibration, 25

cloven -, 26
morphism, 32
split -, 26

cofibred, 32
coinduction, 70, 77, 116, 182
commuting diagram, 15
composable morphisms, 14
composition, 14

in the classifying category, 23
of functors, 16
of relations, 41

comprehension, 38, 41, 263
cons, 145
cons?, 145
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consistent class specification, 179
CONSTANT, 148, 223, 284
constant constructor type, 142
constant type, 142
CONSTRUCTOR, 160, 188, 282, 283
constructor, 51

assertion, 178
declaration, 150, 165, 187
type, 142

context
of OCL constraints, 240
of term variables, 21, 164
of type variables, 126

contravariant functor, 16
conversion (in a type theory), 22
Coproduct, 144
coproduct, 18

along a morphism, 26
fibred, 27

in Pred, 36
in Rel, 39

for types, 126, 128, 136
functor, 26

in Pred, 37
in Rel, 40

over collections in Pred, 37
over collections in Rel, 39

coreduce, 182, 201, 202, 205, 212, 220,
228

cosubstitution functor, 26
counit of an adjunction, 17
covariant functor, 16
CREATION, 182, 282
creationsection, 182, 282

D
data functor, 56, 119, 143, 151, 192
data type, see abstract data type
declaration, 218, 281
DEFINING, 160, 282
definitional extension, 78, 232

in ccsl, 160

definitionsection, 160, 282
descendent, 210
diagram, 15
disjoint union, 20
domain, 14

of a relation, 106
down, 146
dynamic binding, 209, 213

E
ELSE, 181, 282
empty type, 127, 128, 135
empty fun, 145
EmptyType, 144
END, 147, 158, 187, 281, 283, 284
ENDCASES, 181, 283
endofunctor, 4, 16
EOF, 218, 281
equality functor, 41
equivalence relation, 109
eta–conversion, 22
EVENTUALLY, 181, 283
eventually, modal operator, 95, 105, 118,

173
in ccsl, 175

EXISTS, 181, 282
explicit subtyping, 211
exponent, 19

fibred, 27
in Pred, 36
in Rel, 39

for types, 20, 126, 128, 136
extended cartesian functor, 7, 72, 73, 108,

117, 138
extended polynomial (method) type, 142
extended polynomial functor, 6, 49, 72,

73, 93, 117, 138, 151

F
FALSE, 181, 283
fibration, 24

bi–, 25
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cloven -, 24
co–, 25
morphism, 31
of predicates, 35
of relations, 38
preorder -, 25
split -, 25

fibre, 23
fibred, 31

coproduct, 27, 36, 39
exponent, 27, 36, 39
functors, 31
over, 24
product, 27, 36, 39

file, 218, 281
FINAL, 158, 200, 281
final

coalgebra, 68, 115
object, 18

in the fibres of Pred, 38
finitely based coalgebra, 115
first-order logic, 14
FOR, 181, 283
FORALL, 181, 282
formula

in ccsl, 166
in simply typed predicate logic, 27

formula, 181, 282
free variable, 21
freevarlist, 182, 282
Frobenius condition, 30, 35, 42, 102
FROM, 210, 282
full predicate lifting, 156
full relation lifting, 156
functor, 16

contravariant -, 16
coproduct -, 26, 37, 40
cosubstitution -, 26
covariant -, 16
equality -, 41
ext. cart. -, see ext. cart. functor
ext. pol. -, see ext. pol. functor

h.-o. pol. -, see h.-o. pol. functor
pol. -, see pol. functor
powerset -, see powerset functor
product -, 26, 37, 40
substitution -, 24, 36, 40
truth -, 38, 41

G
greatest invariant, 67–68, 95, 173–178
greatest strong invariant, 105
ground signature, 57, 124, 126, 144, 143–

149, 158, 172, 174, 182, 193, 202,
203, 206, 217, 218, 221, 223, 225,
243, 253

anonymous, 222
model, 146
plain, 144
proper, 144
proper model, 146

GROUNDSIGNATURE, 147, 284
groundsignature, 147, 284
groundtermdef, 223, 284

H
higher-order pol. (method) type, 142
higher-order polynomial functor, 6, 72,

73, 79, 117, 151
homset, 14

I
identity morphism, 14
idorinfix, 148, 222, 283
IF, 181, 282
IFF, 181, 282
implicit subtyping, 211
IMPLIES, 181, 282
IMPORTING, 221, 284
importing, 221, 284
IN, 181, 282
in1, 145
in1?, 145
in2, 145
in2?, 145
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include, 219, 285
include directive, 219
induction principle, 52
infix operator, 221
inhabit, 21
INHERIT, 210, 282
inheritance, 75, 150, 210

multiple -, 212
inheritsection, 210, 282
initial

- algebra, see algebra
object, 18

in the fibres of Pred, 38
injection, 18
interface type, 54
interpretation of type constructor, 139
invariant, 3, 57–68, 82–96, 99–106, 147,

154–158, 162, 182, 183, 202, 220,
271

Aczel/Mendler, 58
for h.-o. pol. functors, 90
for pol. functors, 60

greatest, see greatest invariant
Hermida/Jacobs, 58

for h.-o. pol. functors, 85
for pol. functors, 60

in ccsl, 157
in OCL, 241
in Eiffel, 214
least, 67–68
recogniser, 182, 202, 228
strong, see strong invariant
w.r.t. behavioural equality, see be-

haviourally invariant
isomorphism, 14
iterated specification, 7, 140, 143, 191

J
join operation, 134
judgement

for entailments, 27

for formulae over a simple type the-
ory, 27

for kinds, 126
for terms

in ccsl, 125, 164, 167, 168
in simple type theory, 21

for types
in ccsl, 126, 128
in simple type theory, 20
with variance annotation, 135

K
kernel, 64
kind, 126, 128

L
LAMBDA, 181, 282
lambda calculus, 19
lambda expression, 20
late binding, 213
least invariant, 67–68
least partial equivalence relation, 109
left adjoint, 17
LET, 181, 282
Lift, 144
list, 144
list, datatype of -s, 50
loop project, 121
loop project, 8

M
member, 160, 282
METHOD, 160, 282
method, 5

assertion, 178
declaration, 150
type, 142

methodlist, 181, 283
methodsection, 160, 282
MIXED, 138, 281
mixed variance, 131, 137
modal logic, 173–178
model, 1
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abstract data types, 187
class signature, 152
class specification, 179
of ground signature, 146

mongruence, 60
morphism, 14

between algebras, 52
between coalgebras, 3

for h.-o. pol. functors, 80
for pol. functors, 55

between cofibrations, 32
between fibrations, 31
cartesian -, 24, 36, 40
cocartesian -, 25, 36
recogniser, 182, 203, 228
vertical -, 23

multiple inheritance, 212
multiplicity, 240

N
namedformula, 183, 282
natural transformation, 16
naturality condition (of an adjunction),

17
NEG, 138, 281
negative variance, 131, 137
nondeterminism, 57, 87
NOT, 181, 283
null, 145
null?, 145
numberorquestion, 138, 281

O
object

final, 18, 38
in a category, 4, 14
initial, 18, 38
of an o.-o. program, 5

observable behaviour, 2, 54
OCL, 238–254
OF, 181, 283
opfibration, 25

opposite category, 15
opposite relation, 41, 44
OR, 181, 282
out1, 146
out2, 146
over, 23
overriding, 213

P
page directory, 236
parameter translation, 230
parameter, (type -), 148, 150, 187
parameterlist, 148, 281
parameters, 148, 281
partial bisimulation equivalence, 109
partial equivalence relation, 109
partial function, 145
partially reflexive, 106
pattern, 181, 283
polynomial (method) type, 142
polynomial functor, 4, 56, 151
POS, 138, 281
positive variance, 131, 137
powerset functor, 57, 87, 120, 149, 242
predicate

category, 35
fibration, 35
lifting, 53

for ccsl, 155
for h.-o. pol. functors, 83
for pol. functors, 58
for type constructors, 144

prelude, see ccslprelude
preorder category, 14
preorder fibration, 25
PRIVATE, 159, 282
product, 18

along a morphism, 26, 37, 40
cartesian - of sets, 19
category, 15
fibred, 27

in Pred, 36
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in Rel, 39
for types, 20, 126, 128, 136
functor, 26

in Pred, 37
in Rel, 40

over collections in Pred, 37
over collections in Rel, 39

PROJ N, 181, 283
projection, 18
Prop, 127, 128, 135, 164
PUBLIC, 159, 282
pullback, 15

weak -, 15

Q
qualifiedid, 222, 283
quotient, 39, 41

R
reduce, 190, 194, 195, 195, 197, 198, 200,

219
refinement, 9, 229–234

assertional, 230
behavioural, 231

reflexive, 109
relation, 34

category, 38
composition, 41
fibration, 38
lifting, 58

for ccsl, 155
for h.-o. pol. functors, 83
for pol. functors, 58
for type constructors, 144

single carrier binary -, 39
RENAMING, 210, 282
renaming, 210, 282
repeated inheritance, 212
REQUEST, 219, 282
request, 219, 282
requestsection, 219, 282
right adjoint, 17

S
SELF, 129, 182, 282, 284
Self, 127, 128, 135
SELFVAR, 182, 282
sequence

behavioural type of -s, 54
shared ancestor, 212
signature, 1

class -, 3, 150
ground -, see ground signature

signaturesection, 148, 284
signaturesymbolsection, 148, 284
small category, 14
split

cofibration, 26
fibration, 25

state space, 2, 54
static binding, 213
strictly positive variance, 131, 137
strong invariant, 7, 85, 95, 103, 174
subcategory, 14
subcoalgebra

for h.-o. pol. functors, 80
for pol. functors, 55

subsignature, 150
subsignature projection, 154
subspecification, 179
substitution, 22, 128, 136
substitution functor, 24

in Pred, 36
in Rel, 40

substitution operation, 134
subsystem, 60
subtype, 211
subtyping, 211
supertype, 211
symmetric, 109

T
TCC, 225, 252, 263
term, 21

in ccsl, 165
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termdef, 148, 223, 284
THEN, 181, 282
THEOREM, 183, 282
theorem prover, 2
theoremsection, 183, 282
total category, 23
transitive, 109
translation map, 230
TRUE, 181, 283
truth functor, 38, 41
TYPE, 148, 223, 281, 284
type, 20, 125–130

check condition, 252, 263
classification of -, 142
constant, 126, 127
constructor, 125, 128, 136
parameter, 148, 150, 187
theory, 20
variable, 125, 126, 128, 135

context, 126
type, 129, 284
typedef, 148, 223, 284

U
UML, 238–254
Unit, 144
unit, 145
unit of an adjunction, 17
unit type, 127, 128, 135
up, 145
up?, 145
update, 181, 283
update assertion, 186
update method, 186

V
VAR, 182, 282
vardecl, 181, 283
variable, 164

bound, 22
context, 164
free, 21

type -, see type variable
variance, 130–143

algebra, 134
mixed, 131, 137
negative, 131, 137
positive, 131, 137
strictly positive, 131, 137

variance, 138, 281
verification, 2
vertical morphism, 23
visibility, 159, 282

W
weak pullback, 15
weakening, 28, 128, 136, 168
WITH, 181, 283

Z
zigzag, 110
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