
Formal Nova interface specification
Formal specification of the micro-hypervisor interface

(Robin deliverable D.12)

Hendrik Tews Tjark Weber Erik Poll

Marko van Eekelen Peter van Rossum

Radboud Universiteit Nijmegen, The Netherlands

http://www.sos.cs.ru.nl/

May 30, 2008

Revision 47

Based on revision 214 of the informal

Nova micro-hypervisor interface specification

ICIS technical report number ICIS–R08011

This work has been supported by the European Union through PASR grant 104600.

1 Executive Summary

This document contains one major result of work package 4 (kernel specification and
verification): a formal specification of the Nova interface.

The specification consists of three main parts: (1) a definition of an abstract internal
state for the Nova micro-hypervisor, (2) a description of the operations of the hypervisor
in imperative pseudo-code that accesses and modifies the internal state, and (3) a com-
bination of big-step denotational and small-step operational semantics to give semantics
to the pseudo code as state modifying functions.

The outstanding point of this work is the design and use of imperative pseudo code
in the specification to describe the operations of the kernel. With the pseudo code we
found an excellent compromise between the formal world of work package 4 and the
programming world in work package 1 (micro-hypervisor and environment) and work
package 2 (trusted computing base construction kit and application). The pseudo code
is understandable at an intuitive level and can augment the Nova documentation to
increase its preciseness. In fact, the description of the hyper calls in the Nova documen-
tation [Steb, 5] already contains pseudo code to make the natural language description
precise. The pseudo code enhances the informal specifications, but at the same time,
when augmented with a formal definition of the kernel state space, it forms the basis of
a specification of the Nova interface.

The pseudo-code programs in this document and in the Nova documentation are al-
most identical (apart from minor differences in concrete syntax). The remaining small
differences are caused by the constant evolution of the original Nova documentation.
This document is in sync with revision 214 of the informal Nova micro-hypervisor inter-
face specification from March 14th, 2008. Later changes have not been incorporated.

During the project we were confronted with personnel problems beyond our control.
Because of administrative difficulties our second postdoc in work package 4 was not able
to timely renew his working permit for the Netherlands and had to quit his contract in
the project in the sequel. Because of these personnel problems we did not quite reach our
original goal to formalize the Nova interface specification in an appropriate tool, such
as PVS or Isabelle/HOL. However, the status reached is very close. It should now be
a simple exercise to formalize the specification described in this document in a theorem
prover for higher-order logic, or in some other appropriate tool.

2

Contents

1 Executive Summary 2

2 Introduction 5
2.1 Notation . 6

3 Kernel State 8
3.1 Descriptors . 10
3.2 Capabilities . 11
3.3 Kernel Objects . 13
3.4 Kernel State . 14

4 Pseudo-Code Semantics 16
4.1 Denotational Semantics for Expressions and Simple Statements 16

4.1.1 Expressions . 16
4.1.2 Simple Statements . 18

4.2 Operational Semantics for Local and Global Control Flow 20
4.2.1 Pseudo-Code Transitions . 22
4.2.2 Meta Steps in the Operational Semantics 24
4.2.3 Initial System State . 25

5 Pseudo-Code Description of the Nova Hyper Calls 27
5.1 Create Protection Domain . 27

5.1.1 Global Constants . 27
5.1.2 Arguments . 27
5.1.3 Pseudo Code . 27

5.2 Create Execution context . 28
5.2.1 Arguments . 28
5.2.2 Pseudo Code . 28

5.3 Create Scheduling Context . 29
5.3.1 Arguments . 29
5.3.2 Pseudo Code . 29

5.4 Create Wait Queue . 29
5.4.1 Arguments . 29
5.4.2 Pseudo Code . 30

5.5 Create Portal . 30
5.5.1 Arguments . 30

3

Contents

5.5.2 Pseudo Code . 30
5.6 Inter-Domain Communication: Send, Call 31

5.6.1 Arguments . 31
5.6.2 Pseudo Code . 31

5.7 Inter-Domain Communication: Reply and Wait 32
5.7.1 Arguments . 32
5.7.2 Pseudo Code . 32

5.8 Capability Revocation . 33

6 Conclusions 34

7 Bibliography 35

Index 36

4

2 Introduction

This document contains a formal specification of the hyper calls of the Nova micro-
hypervisor. The mathematical definitions of this document are of course self-contained.
However, without knowing the Nova hypervisor in detail it will be difficult to make sense
of them. In particular, we are not repeating any material from the Nova documenta-
tion [Stea, Steb]. It is assumed that the reader is familiar with these documents.

During our work on the specification it was one major goal to come up with a formal
specification that could be useful for those designing and working with Nova. In theory
a precise description of the interface of a system is always invaluable for designers and
users. In practice however, specifications are often too complicated for designers and
users to understand and use them in the time they are willing to spend.

As a step towards designers and users of Nova, we split the specification up into
pseudo code describing the hyper calls of Nova (see Chapter 5), a formalization of the
internal state space of Nova (see Chapter 3), and the foundation of the pseudo code
(see Chapter 4). The pseudo code is imperative in nature, updating local variables
or the kernel state. With very few exceptions, the fields of the kernel state are taken
literally from the informal Nova specification [Steb]. Therefore the pseudo code is easily
understandable for people that know Nova in detail. In fact, each hyper call in the Nova
documentation [Steb, 5] is annotated with pseudo code, making the informal description
in English language of the behavior much more precise.

The other two parts of the specification give a precise mathematical meaning to the
pseudo code; they are much more formal. They are very likely to be ignored by the
designers and users of Nova. This ignorance is well-justified, as those sections do not
contribute to an intuitive understanding of the pseudo code.

To make the complete specification easier to comprehend, we do not use any fancy
specification mechanisms that require additional knowledge. We only use simple, naive
set theory, with which the reader is assumed to be familiar. The internal state of the
kernel is defined in Chapter 3 as a tuple of functions. The kernel objects that appear
inside the states are simple records.

For the pseudo code we do not define a full-blown imperative language. The trick
instead is to view the expressions and statements in the pseudo code as syntactic sugar
for manipulating kernel states. While this makes it slightly more difficult to decide
at first glance whether a given symbol string is valid pseudo code, we are happy to
accept this difficulty as our approach greatly simplifies the semantics definition given in
Chapter 4.

The pseudo code consists of three kinds of statements: (1) assignments, (2) local
control flow statements (such as if, but also the special error statement), and (3) the
global control flow statement block. Assignments and local control flow statements can

5

2 Introduction

be given a semantics considering only the kernel state and a vector of local variables.
To describe the effect of block, one must however take all execution contexts and their
state into account. We solve the dilemma by defining an operational small step semantics
on top of a denotational big step semantics: statements and expressions are described
with a denotational big-step semantics with respect to the kernel state. The behavior
of the complete system is then defined using an operational small-step semantics. This
small-step semantics interprets the local and global control flow statements. It yields a
transition system describing all possible future states of the system. Scheduling decisions
and user programs (that decide which system calls are performed) are captured using
nondeterminism.

The specification describes the behavior of Nova under the assumption of a one-
processor system. In our pseudo code the test for non-emptiness (of a list or a queue)
and the retrieval of one element is spread over usually two statements. This is obvi-
ously incorrect on a multi-processor system, if not protected with locks. The pseudo
code in the Nova documentation combines test and retrieval into one utility function. In
our version expressions are side-effect free, simplifying the semantics of the pseudo code
considerably.

The pseudo-code programs in this document and in the Nova documentation are for-
mulated in slightly different concrete syntaxes. Apart from this representation issue the
programs are almost identical. This document and the pseudo code herein is in sync with
revision 214 of the informal Nova micro-hypervisor interface specification from March
14th, 2008. The informal interface description has evolved since then, leading to small
differences in both documents.

In the future this document should be merged with the informal Nova interface spec-
ification to have only one set of pseudo-code programs. The merged document could
contain the mathematical foundations of the pseudo code as a technical appendix.

2.1 Notation

We write N for the set of non-negative integers, i.e. N := {0, 1, 2, . . .}. We write B for
the set of Boolean values, i.e. B := {true, false}.

We write f : A → B for a total function mapping elements from A to B. We write
g : A ⇀ B for a partial function g from A to B. In contrast to a total function, a partial
function may leave the image of some a ∈ A undefined, that is, those a’s are not mapped
to any element of B. The domain of the partial function g consists of those elements of
A that are actually mapped to some element of B.

We omit parentheses in function applications where this does not lead to ambiguities,
using f x for what is often written f(x).

The notation f(a 7→ b) is used to denote function update for partial and total func-
tions, i.e. if f is a partial or total function from A to B, a ∈ A and b ∈ B, then (for
x ∈ A)

[f(a 7→ b)] (x) :=

{

b if x = a;
f(x) otherwise.

6

2 Introduction

A record is a tuple whose elements have been assigned names. These names can be
used to access and update elements of the record. If n is the name of the i-th element
of the tuple (x1, . . . , xi, . . .), then (x1, . . . , xi, . . .).n = xi. Similar to function update we
write x(n 7→ e) to denote the tuple that is identical to x, except that the field with name
n holds e: (x1, . . . , xi−1, xi, xi+1, . . .)(n 7→ e) = (x1, . . . , xi−1, e, xi+1, . . .).

The set of finite lists (i.e. words) over the set A is denoted by List[A]. The empty list
is written [], and the constructor function, which prepends one element to a list, is given
by cons.

7

3 Kernel State

In this chapter, we describe the state space of the specification’s formal model of the
Nova kernel. A single state contains a set of different kernel objects, that are linked (via
pointers) with each other. System calls change, create and destroy possibly several kernel
objects, producing a new state. It is important here to model the side effect of kernel
object modification in the right way. Consider a state s in which the kernel object o1

has a link to the kernel object o2, and some system or hyper call that modifies o2 such
that it becomes o′2. Then in the result state s′ the object o1 has a link to the modified o′2.
To obtain this kind of side effect we explicitly model pointer structures: object o1 will
contain a descriptor d, and the state s will map d to o2. Modifying an object then means
to update the descriptor mapping function to let the original descriptor point to the new
object: the state s′ will map d to o′2.

The validity of our approach hinges on an important property about object identity
and the object descriptor mapping. To discuss this property we have to distinguish the
real-world concepts identity and equality. In the real world identity implies equality but
not vice versa: One might have two real-world objects that are indistinguishable apart
from the fact that they are located at different places. On the contrary one cannot have
two identical real-world objects, because if they are really identical, then they are the
same and one has just one object. Complications arise from the fact that in the world of
simple set theory identity and equality are identified: In the real world (or inside Nova)
one can have two different but equal objects. In simple set theory objects are identical
(they are the same) if and only if they are equal.

Because complications arise when switching from the real world (a running Nova
instance) to the mathematical universe (a state modelling a Nova instance at a certain
point in time) we have to distinguish both worlds. Whenever we say in Nova in the
following we refer to the real world. In the model clearly refers to the mathematical
universe.

In our modelling complications arise from side effects: If one has two equal but different
objects o1 and o2 in Nova and o1 is changed such that it becomes o′1 then in the model
o2 must not change, although o1 and o2 are the same in the model. On the other hand
if inside Nova the target of two pointers of two objects o1 and o2 is the same object o3,
then, in the model, updates to o3 must be visible from o1 and o2.

These obvious requirements lead to the following property: For two objects that are
identical inside Nova there is at most one descriptor (pointer) mapped to this object
in the model. The model can contain several descriptors that are mapped to the same
object, but then one has correspondingly many different but equal objects inside Nova.
In programming terms this property just says that the same object cannot start at

8

3 Kernel State

Protection domain
is either an address space

or a virtual machine

+memory space

+I/O space

+object space

Execution Context
- permanently bound to the creator PD

- kernel thread or virtual CPU

+protection domain

+scheduling contexts

+UTCB

+CPU registers

+FPU registers

+reply capability register

+activity state: ready or blocked
Nibs attribute: whether in the ready
queue or not

Scheduling Context
- always bound to precisely one EC
- permanently bound to one CPU

+current execution context

+CPU

+period

+priority

+time quantum

Wait Queue
permanently bound to the creator PD

+wait queue
waiting receive execution contexts

+send queue
blocked sender execution contexts

Portal
- permanently bound to the creator PD
- permanently bound to precisely one

wait queue

+wait queue

+message transfer descriptor

+entry IP

Memory capability
not yet in the spec

I/O capability
not yet in the spec

EC capability
undelegatable

points to a execution context SC capability
undelegatable

points to a scheduling context

WQ capability
undelegatable

points to a wait queue

Portal capability
holder can delegate

points to a portal

Reply capability
undelegatable

points to the caller execution context
destroyed on invocation

+donated scheduling context
present if associated with donating idc

PD capability
undelegatable

points to a protection domain

capability

kernel object

nonempty kernel object capability

+kernel object

empty capability

Figure 3.1: Kernel objects and their relation

9

3 Kernel State

two different addresses in memory. In the model new kernel objects are always created
with a kernel-object constructor statement (see Definition 4.1.9 on page 20 below). The
constructor statement adds a mapping to the new object to the state that uses new, so
far unused descriptor.

The objects in the abstract kernel state and the links between them are depicted in
Figure 3.1. An explanation of these kernel objects is given in the Nova documenta-
tion [Stea, Steb]. Here we are assuming complete familiarity with the Nova documenta-
tion.

Solid arrows in Figure 3.1 represent links or pointers. Any portal will, for instance,
always be linked to a wait queue. Dashed arrows symbolize the is a relation: A wait
queue is a kernel object. The three entities capability, nonempty kernel object capability

and kernel object represent some kind of object super type. These super types have only
been introduced to keep Figure 3.1 comprehensible. The super types do not play any
role in the formal model. The concrete capabilities, such as the PD (protection domain)
and WQ (wait queue) capability, inherit the kernel-object pointer field from the abstract
kernel object capability. In the concrete capabilities this kernel-object pointer is well-
typed: the pointer in a wait queue capability will always point to a wait queue, as
indicated in the figure.

The objects in Figure 3.1 and the links are taken almost literally from the informal
Nova interface specification [Steb]. Fields attributed with the comment Nibs attribute1

however are our addition. They describe state that is explicitly or implicitly available
in the Nova kernel, but not described in the documentation.

Some of the fields visible in Figure 3.1 do not play any role in the informal documen-
tation, apart from being mentioned as attributes of some kernel object. Because those
fields do not contribute in any way to the specification we have omitted them from our
formal descriptions of kernel object (in Section 3.3) and from the pseudo code (in Chap-
ter 5). It remains future work to refine this specification in a suitable way to incorporate
those omitted attributes, once their effect is described informally.

From now on we make a clear distinction between kernel objects and capabilities. Ker-
nel objects are only those that inherit from kernel object in Figure 3.1. Thus, although
capabilities are objects in the abstract kernel state, they are not referred to as kernel
objects in the following.

3.1 Descriptors

Descriptors are the specification’s notion of pointers. There are only descriptors to kernel
objects. Capabilities are stored in arrays or fields, therefore capabilities are accessed by
array index or field name.

Definition 3.1.1 (Descriptors). We define the following sets of descriptors to kernel
objects:

1A predecessor of this document was called Nova Interface Base Specification, giving rise to the

acronym Nibs to which we stick here.

10

3 Kernel State

• PDdesc is the set of protection domain descriptors;

• ECdesc is the set of execution context descriptors;

• SCdesc is the set of scheduling context descriptors;

• PTdesc is the set of portal descriptors;

• WQdesc is the set of wait queue descriptors.

We assume these sets to be infinite and pairwise disjoint. Moreover, we assume that
each of these sets contains a distinguished element symbolizing the descriptor that does
not refer to any object. This descriptor is referred to as null-desc.

Capabilities are treated differently. A capability is referenced (both in the actual
kernel and in this specification) by an index into a protection domain’s capability table.
We model these indices as natural numbers; the only reason for the distinct names is
clarity of the specification.

Definition 3.1.2 (Indices to Capabilities). We define the following sets of indices to
capabilities:

• CDPD := N is the set of indices to protection domain capabilities;

• CDEC := N is the set of indices to execution context capabilities ;

• CDSC := N is the set of indices to scheduling context capabilities ;

• CDPT := N is the set of indices to portal capabilities;

• CDWQ := N is the set of indices to wait queue capabilities.

Reply capabilities are never referred to by index.

3.2 Capabilities

Capabilities are tokens that designate an object together with access rights to that
object. They give user programs the right to perform specific actions on this object,
such as using it as an argument to a system call. Capabilities are never passed around
by reference. If kernel objects are donated, i.e. given to a potentially different protection
domain, the kernel will always create a new capability (with possibly diminished access
rights).

Definition 3.2.1 (Protection Domain Capability). A protection domain capability is a
singleton (pd), where

• pd ∈ PDdesc.

The set of all protection domain capabilities is denoted by CapPD.

11

3 Kernel State

Definition 3.2.2 (Execution Context Capability). An execution context capability is a
singleton (ec), where

• ec ∈ ECdesc.

The set of all execution context capabilities is denoted by CapEC.

Definition 3.2.3 (Scheduling Context Capability). A scheduling context capability is a
singleton (sc), where

• sc ∈ SCdesc.

The set of all scheduling context capabilities is denoted by CapSC.

Definition 3.2.4 (Portal Capability). A portal capability is a singleton (pt), where

• pt ∈ PTdesc, and

The set of all portal capabilities is denoted by CapPT.

Definition 3.2.5 (Wait Queue Capability). A wait queue capability is a singleton (wq),
where

• wq ∈ WQdesc.

The set of all wait queue capabilities is denoted by CapWQ.

Definition 3.2.6 (Reply Capability). A reply capability is a pair (ec, sc), where

• ec ∈ ECdesc, and

• sc ∈ SCdesc.

The set of all reply capabilities is denoted by CapReply.

Definition 3.2.7 (Null Capability). The null capability is a special capability (different
from all other capabilities) without any data. It is referred to as null-cap.

Reply capabilities are only stored in the reply-capability register of execution contexts.
All other capabilities are stored in the object-space array of protection domains.

Definition 3.2.8 (CapObj-space). The set of all object space capabilities, CapPD∪CapEC∪
CapSC ∪ CapWQ ∪ CapPT ∪ {null-cap}, is denoted by CapObj-space.

12

3 Kernel State

3.3 Kernel Objects

Aside from descriptors and capabilities, the Nova kernel uses five kinds of kernel objects
to store information that is relevant to this formal specification: namely protection
domains, execution contexts, scheduling contexts, portals, and wait queues. In the
following we define these objects as certain tuples. In these definitions we will state
default values for some of the tuple elements. These default values are important for
the semantics of the constructor statement for kernel objects (see Definition 4.1.9 on
page 20). The constructor statement takes arguments for precisely those tuple elements
that have no default initialization. The constructor combines its arguments with the
default values in the obvious way to determine the new kernel object.

Certain attributes (such as the priority in a scheduling context) are mentioned in the
informal Nova specification, but without any description of their effect (at least not in
revision 214, on which this specification is based). Consequently these attributes are
omitted in the following definitions.

Definition 3.3.1 (Protection Domain). A protection domain is a singleton
(object-space), where

• object-space : N → CapObj-space is an array mapping indices to capabilities. (Its
default value is the function that maps all indices to the null capability, null-cap.)

The set of all protection domains is denoted by PD.

In any reachable kernel state the set of indices to non-null capabilities, {i ∈ N |
object-space i 6= null-cap}, will be finite. In the Nova implementation, a protection
domain also contains a memory space and an I/O space. These attributes are currently
not present in the formal specification.

Definition 3.3.2 (Execution Context). An execution context is a four-tuple
(pd, sc, reply-cap, state), where

• pd ∈ PDdesc (with no default value),

• sc ⊆ SCdesc (defaulting to the empty set),

• reply-cap ∈ CapReply (defaulting to the null capability), and

• state ∈ {ready, blocked} (defaulting to ready).

The set of all execution contexts is denoted by EC.

In the Nova implementation, an execution context also contains register values and
a user thread control block (UTCB). These attributes are currently not present in the
formal specification. In all reachable kernel states sc will contain only finitely many
descriptors.

Definition 3.3.3 (Scheduling Context). A scheduling context is a singleton (ec), where

13

3 Kernel State

• ec ∈ ECdesc (with no default value).

The set of all scheduling contexts is denoted by SC.

In the Nova implementation, a scheduling context also contains a CPU identifier, a
time quantum, a period, and a priority. These attributes are currently not present in
the formal specification.

Definition 3.3.4 (Portal). A portal is a singleton (wq), where

• wq ∈ WQdesc (with no default value).

The set of all portals is denoted by PT.

In the Nova implementation, a portal also contains a message transfer descriptor and
an entry instruction pointer. These attributes are currently not present in the formal
specification.

Definition 3.3.5 (Wait Queue). A wait queue is a pair (wait-queue, send-queue), where

• wait-queue ∈ List[EC] (defaulting to the empty list), and

• send-queue ∈ List[EC] (defaulting to the empty list).

The set of all wait queues is denoted by WQ.

The wait-queue field contains execution contexts waiting to receive (from a call/send
using a portal that points to this wait queue). The send-queue field contains execution
contexts currently doing a call or send (using a portal that points to this wait queue)
that have to wait until a possible receiver execution context shows up. Naturally, there
are no reachable kernel states where both queues are non-empty.

3.4 Kernel State

The state of the kernel is now given by five partial functions that map descriptors to
kernel objects, and by one field that holds the current scheduling context.

Definition 3.4.1 (Kernel State). A kernel state is a 6-tuple (Pd, Ec, Sc, Pt, Wq, current-sc),
where

• Pd : PDdesc ⇀ PD,

• Ec : ECdesc ⇀ EC,

• Sc : SCdesc ⇀ SC,

• Pt : PTdesc ⇀ PT,

• Wq : WQdesc ⇀ WQ, and

14

3 Kernel State

• current-sc ∈ SCdesc.

The set of all kernel states is denoted by State.

Not every 6-tuple in State corresponds to an actual Nova state. The reachable kernel
states fulfill the following properties:

• The domains of the five partial functions are finite.

• The null descriptor null-desc is not in the domain of any of the five partial
functions.

• Sc current-sc is undefined only when the operational semantics performs meta steps,
see Section 4.2, and current-sc = null-desc in this case. Otherwise Sc current-sc
is defined.

• Suppose d is a descriptor that is mapped (by the corresponding partial function)
to a kernel object o. Then all non-null descriptors in o are in the domain of their
corresponding partial function (e.g. a wait queue descriptor in o is mapped to some
wait queue by Wq, etc.).

Let σ be a kernel state. The live kernel objects of σ are the elements in the range of
either of the five partial functions in σ. The live descriptors in σ are the elements in the
domain of either of the five partial functions in σ.

15

4 Pseudo-Code Semantics

In this chapter, we give a formal semantics for the pseudo code that we use to specify
the behavior of system calls in the following chapter. The semantics is split into a deno-
tational (big step) semantics for expressions and single statements, and an operational
(small step) semantics for the local and global control flow. Most of this is completely
standard without any surprises.

4.1 Denotational Semantics for Expressions and Simple

Statements

We give a denotational semantics of simple pseudo-code statements as a partial function
that maps pairs (Γ, σ) to successor pairs (Γ′, σ′). Here Γ is an environment holding the
values of local variables, and σ is a kernel state according to Definition 3.4.1. Formally
an environment is a partial function from variable symbols to Value, the set of all values,
where

Value := CapReply ∪ CapObj-space ∪ PD ∪ EC ∪ SC ∪ PT ∪ WQ.

The set of all environments is denoted by Env.
We do not specify a precise grammar for our pseudo code. Such a grammar is implicit

from the semantics definition below, and from the pseudo code fragments used in the
following chapter.

4.1.1 Expressions

Expressions are side-effect free. They do not modify the current state, but they denote
a value that will usually depend on the state. Expressions include (local and global)
variable names, arguments of system calls, record field access, and literals.

Local Variables

The semantics of a local variable (or a system call argument) x is given by its value in
the environment.

Definition 4.1.1 (Semantics of Local Variables and Arguments). Let x be the name of
a local variable, or the name of a system call argument. Then [[x]](Γ,σ) := Γ(x).

Local variables must be assigned a value before their first use. A pseudo-code fragment
accessing a local variable that has not been assigned a value is ill-formed.

16

4 Pseudo-Code Semantics

Field Access

If x is an expression that denotes a tuple with a named field a (where the field names are
those used in the definitions in Chapter 3), we write x.a to select this field in x. Field
access associates to the left: x.a.b is short for (x.a).b.

Definition 4.1.2 (Semantics of Field Access). Let x be an expression with [[x]](Γ,σ) =
(xa, xb, . . .). Then [[x.a]](Γ,σ) := xa (and likewise for x.b, . . .).

Global Variables

The pseudo code can access the five partial functions and the current-sc field that are
part of the kernel state (see Definition 3.4.1) via global variables.

Definition 4.1.3 (Semantics of Global Variables). Let x ∈ {Pd, Ec, Sc, Pt, Wq, current-sc}.
Then [[x]](Γ,σ) := σ.x.

Capability Creation Functions

For each capability type there is a constructor function that takes precisely as many
arguments as there are fields in the capability. The pseudo code denotes these con-
structor functions in C++ style in the form new x-cap(...), where x names one of the
capability types PD, EC, SC, Portal, WQ and Reply. Note that the very similar looking
new PD(...) is instead a kernel-object constructor statement, whose semantics is given
in Definition 4.1.9 on page 20.

Definition 4.1.4 (Semantics of Capability Creation).

[[new PD-cap(x)]](Γ,σ) := ([[x]](Γ,σ))

[[new EC-cap(x)]](Γ,σ) := ([[x]](Γ,σ))

[[new SC-cap(x)]](Γ,σ) := ([[x]](Γ,σ))

[[new Portal-cap(x)]](Γ,σ) := ([[x]](Γ,σ))

[[new WQ-cap(x)]](Γ,σ) := ([[x]](Γ,σ))

[[new Reply-cap(x,y)]](Γ,σ) := ([[x]](Γ,σ), [[y]](Γ,σ))

Predefined Functions

There are predefined Boolean functions to test a list for emptiness, and to test the type
of a capability.

17

4 Pseudo-Code Semantics

Definition 4.1.5 (Semantics of Predefined Functions).

[[nonempty? l]](Γ,σ) :=

{

true if [[l]](Γ,σ) = [];

false otherwise.

[[nonempty-cap? c]](Γ,σ) :=

{

false if [[c]](Γ,σ) = null-cap;

true otherwise.

[[is-PD-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapPD;

false otherwise.

[[is-EC-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapEC;

false otherwise.

[[is-SC-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapSC;

false otherwise.

[[is-Portal-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapPortal;

false otherwise.

[[is-WQ-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapWQ;

false otherwise.

[[is-Reply-cap? c]](Γ,σ) :=

{

true if [[c]](Γ,σ) ∈ CapReply;

false otherwise.

Literals and Other Expressions

Literals (e.g. 0, 1, . . . , true, false, etc.) and other pseudo-code expressions (e.g. x = y,
x and y, not x, etc.) have their obvious semantics.

4.1.2 Simple Statements

Statements usually modify the current state in some way: assignments to local variables
will update the environment Γ, while other statements will change the actual kernel
state σ by modifying existing kernel objects or creating new ones. Here, we only treat
assignments and kernel-object constructor statements. For composite and control-flow
statements see Section 4.2.1 (on page 22 below).

Assignment

There are three different forms of assignment in the pseudo code:

• local variable assignments,

• field updates of some kernel object, and

• overwriting a capability in the object space of some protection domain.

18

4 Pseudo-Code Semantics

We now define their semantics. Additionally, there are statements of the form
desc-var := new Although these look like an assignment, they really are kernel-
object constructor statements (see Definition 4.1.9).

Definition 4.1.6 (Semantics of Assignment to Local Variables/Arguments). Let x be
the name of a local variable, or the name of a system call argument, and let e be an
expression. Then

[[x:= e]](Γ,σ) :=
(

Γ(x 7→ [[e]](Γ,σ)), σ
)

.

Definition 4.1.7 (Semantics of Field Update of Kernel Objects). Let d be an expression
that denotes a descriptor to a kernel object, let f be a field of that kernel object, and
let e be an expression that denotes a possible value of field f. In the current state σ the
descriptor d denotes a kernel object, which can be accessed as σ.ξ [[d]](Γ,σ), where ξ is the
name of the state field corresponding to the type of d (i.e. ξ = Pd for [[d]](Γ,σ) ∈ PDdesc,
ξ = Sc for [[d]](Γ,σ) ∈ SCdesc, etc.). Let xσ denote the updated kernel object in state σ:

xσ :=
(

σ.ξ [[d]](Γ,σ)

)(

f 7→ [[e]](Γ,σ)

)

Then the semantics of field update is defined as

[[d.f := e]](Γ,σ) :=
(

Γ, σ
(

ξ 7→ (σ.ξ([[d]](Γ,σ) 7→ xσ))
)

)

.

If σ.ξ d is not defined, then the semantics of the entire assignment in state σ is undefined.

Definition 4.1.8 (Semantics of Overwriting Capabilities). Let d be an expression that
denotes a protection domain descriptor in PDdesc, let i be an expression that denotes
an index in N, and let c be an expression that denotes a capability. Let oσ denote the
updated object space in state σ:

oσ :=
(

(σ.Pd [[d]](Γ,σ)).object-space
)(

[[i]](Γ,σ) 7→ [[c]](Γ,σ)

)

.

Because protection domains are singletons, the singleton (oσ) is the updated protection
domain. Then the semantics of overwriting capabilities is defined as

[[d.object-space[i] := c]](Γ,σ) :=
(

Γ, σ
(

Pd 7→ σ.Pd([[d]](Γ,σ) 7→ (oσ))
))

.

Kernel-Object Constructor Statement

A statement of the form l := new-X(...), where l is a local variable and X names
one of the kernel objects, is a kernel-object constructor statement. It first determines
a fresh, so far unused descriptor d, and then changes the state to let d be mapped to
a kernel object whose fields have values according to the arguments in the constructor
statement (except for fields with default value). The restriction to local variables on the
left-hand side is not really essential, it is just that in the current pseudo code, newly
created kernel objects are always assigned to local variables.

19

4 Pseudo-Code Semantics

Definition 4.1.9 (Semantics of Constructor Statement). Let l be a local variable, let X
be one of PD, EC, SC, Portal or WQ, and let ξ be the name of the state field corresponding
to X. Let n be the number of fields of the kernel object denoted by X without default
value, and let f1, . . . , fn be their respective field names. (If, for instance, X is PD, then
n = 0 and the list of fi is empty. If X is EC, then n = 1 and f1 = pd.) Assume further n

expressions e1, . . . , en denoting possible values for the fields f1, . . . , fn.
Let o be the kernel object of the type denoted by X whose fields f1, . . . , fn have values

[[e1]](Γ,σ), . . . , [[en]](Γ,σ) respectively, and the other fields have their default value (as given
by the definitions in Chapter 3). For a state σ, let dσ be a descriptor that is not live
in σ. Then the semantics of the constructor statement is as follows:

[[l := new-X(.f1 := e1, . . . , .fn := en)]](Γ,σ) :=
(

Γ(l 7→ dσ), σ(ξ 7→ σ.ξ(dσ 7→ o))
)

.

4.2 Operational Semantics for Local and Global Control

Flow

Up to now we described a simple imperative programming language. The only thing
not completely standard was the state space over which this programming language is
interpreted. The if and while statements are completely standard as well. However,
before we can describe them we have to motivate the definition of system state.

What makes our pseudo code a bit special are the error and the block statement.
The error statement captures abnormal exits from hyper calls for instance because of
unsuitable argument values. We thereby abstract from the different error codes that the
Nova hypervisor gives back in such cases. A pseudo-code program executing error is
instantly terminated, skipping all remaining pseudo-code statements.

The behavior of the block statement can only be described with respect to the com-
plete system state, consisting of a kernel state and a set of active execution contexts
of which each runs a pseudo code program. The actions of these pseudo programs are
interleaved. At any given point in time only one execution context makes progress. This
one progressing execution context is called the current execution context . The other
active execution contexts are suspended. Rescheduling (that is suspending the current
context and letting a different one execute) happens at block statements and at the end
of the pseudo code program.

In our specification execution contexts that are equal but physically different are
identified (compare the discussion about identity and equality on page 8). Therefore,
we have to speak about the current execution-context descriptor. It is possible to have a
system state with two descriptors d1 and d2 that are both mapped to the same execution
context. It corresponds to a Nova state with two execution contexts that agree on all
the fields listed in Definition 3.3.2. Only one of those two can be the current one.

In our specification the currently live execution contexts (i.e. those that exist in a
given state) are divided into the active and inactive ones. Active execution contexts
are currently executing a hyper call and are associated with a pseudo code program
(that they are currently executing) and a context Γ holding local variables and hyper

20

4 Pseudo-Code Semantics

call arguments. Inactive execution contexts are executing user code. They have no
associated pseudo code program. At any point in time an inactive execution context can
become active by (nondeterministically) choosing a hyper call with suitable arguments.
An active execution context becomes inactive when it finished it current pseudo-code
program.

For the same reason as before the distinction between active and inactive execution
contexts must actually be made on the level of execution-context descriptors.

The block statement can be nested inside if or while statements. Therefore these
statements get an operational semantics, in which the current execution context makes
progress in its pseudo-code program, thereby changing the kernel state. If the current
execution context hits a block statement it is suspended and stored back to all the other
active execution contexts. Thereby one must remember its local variable context Γ and
the statement following the block statement, such that this execution context can con-
tinue to process its pseudo-code program once it is again selected as current. After
suspending the current execution context there is a nondeterministic choice: (1) a cur-
rently inactive execution context can be chosen (nondeterministically) to become active,
(2) one of the active execution contexts can be chosen (nondeterministically) to become
current. This execution context will then continue its pseudo code program where it was
suspended before or start it (if it was just made active) until the pseudo-code program
terminates or a block statement is executed. Choosing a new current execution context
happens by nondeterministically selecting a live scheduling context that points to an
execution context whose state is ready.

In the operational semantics we distinguish pseudo-code steps and meta steps. Pseudo-
code steps make progress in the pseudo-code program of the current execution context.
They are enabled if σ.current-sc 6= null-desc for the current kernel state σ. Meta steps
are the activation of an execution context or the selection of a new current execution
context. Meta steps are enabled if σ.current-sc = null-desc. Executing a block state-
ment sets σ.current-sc to null-desc, and selecting the next current execution context
sets σ.current-sc to a value different from null-desc.

A pseudo-code program is a finite list of statements [s1, . . . , sn], where each of the si

can be a simple or complex statement. Occasionally we write just one si of a sequence
of statements, for instance in the branches of if statements. In pseudo-code programs
that are currently executing or suspended, we mark the statement to be executed next
with an arrow: [s1, . . . ,→ si, . . . , sn].statement to be executed can be nested:

[. . . , if e then si,1, . . . ,→ si,j, . . . si,ni
else . . . endif , . . .]

A pseudo-code program that has been processed completely is depicted as [s1, . . . , sn,→
]. Similarly we use [s1, . . . , if e then . . . → else . . . endif , . . .] to indicate that the
execution has reached the end of the then-block.

The set of all pseudo-code programs with next-statement marks is denoted by Program.

Definition 4.2.1 (System State). The system state is a pair (σ, active-ec), where

• σ is a kernel state (according to Definition 3.4.1), and

21

4 Pseudo-Code Semantics

• active-ec : ECdesc ⇀ Env × Program is a partial function whose domain contains
precisely the active execution-context descriptors, mapping them to their current
local variable environment and pseudo-code program.

In the reachable system states the following properties hold:

• The active execution-context descriptors (elements in the domain of active-ec) are
contained in the live execution context descriptors in σ.

• All descriptors in all environments Γ in the range of active-ec are live.

• If σ.current-sc 6= null-desc, then the execution-context descriptor reached from
σ.current-sc is the current execution-context descriptor:

current-ec := (σ.Sc σ.current-sc).current-ec

The current execution-context descriptor shall always be in the domain of active-ec.

• All the live but inactive execution contexts are in state ready.

A system state with σ.current-sc 6= null-desc (where a current execution-context
descriptor can be determined as just described) is said to contain the current execution-

context descriptor current-ec.
In the following two subsections we define the possible transitions s −→ s′ for system

states s and s′. This gives a transition system describing the behavior of the Nova
micro-hypervisor. In this transition system states with precisely one successor state
describe deterministic behavior, where the kernel is processing a hyper call and the next
action is completely determined by the current kernel state and the current pseudo-
code program. There are also states with many successor states. They correspond to
scheduling decisions (where there is one successor state for each possible schedule) and to
hyper calls initiated by user code (there is one successor state for each possible hyper call
with a well-typed argument list for each live but inactive execution-context descriptor).

4.2.1 Pseudo-Code Transitions

Sequential composition and the if and while statements are completely standard. Note
that currently we don’t have diverging while loops in the traditional sense, because the
only while loop (in the pseudo code for call/send on page 31) contains a block statement.

Definition 4.2.2 (Semantics of Sequential Composition). Let s be a system state with
current execution-context descriptor d such that s.active-ec d = (Γ, p). Then, depending
on p, the following transition is possible.

• p = [s1, . . . ,→ si, si+1, . . . , sn]:

Let (Γ′, σ′) = [[si]](Γ,s.σ), then there is a transition to the state

(

σ′, s.active-ec
(

d 7→ (Γ′, [s1, . . . , si,→ si+1, . . . , sn])
))

.

22

4 Pseudo-Code Semantics

Definition 4.2.3 (Semantics of if). Let s be a system state with current execution-
context descriptor d such that s.active-ec d = (Γ, p). The following transitions for
if statements are possible, depending on p.

• p = [s1, . . . ,→ if e then si,1 else si,2 endif , . . . , sn]:

In case [[e]](Γ,s.σ) equals true, there is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . , if e then → si,1 else si,2 endif , . . . , sn])
))

.

Otherwise there is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . , if e then si,1 else → si,2 endif , . . . , sn])
))

.

• p = [s1, . . . , if e then si,1 → else si,2 endif , si+1, . . . , sn] or
p = [s1, . . . , if e then si,1 else si,2 → endif , si+1, . . . , sn]:

There is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . , if e then si,1 else si,2 endif , → si+1, . . . , sn])
))

.

Definition 4.2.4 (Semantics of while). Let s be a system state with current execution-
context descriptor d such that s.active-ec d = (Γ, p). The following transitions for while

statements are possible, depending on p.

• p = [s1, . . . ,→ while e do si done, si+1, . . . , sn]:

In case [[e]](Γ,s.σ) is true, there is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . , while e do → si done, si+1, . . . , sn])
))

.

Otherwise there is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . , while e do si done, → si+1, . . . , sn])
))

.

• p = [s1, . . . , while e do si → done, si+1, . . . , sn]:

There is a transition to the state

(

s.σ, s.active-ec
(

d 7→ (Γ, [s1, . . . ,→ while e do si done, si+1, . . . , sn])
))

.

The error statement captures all error reporting functionality. Executing error ter-
minates the current pseudo-code program immediately.

Definition 4.2.5 (Semantics of error). Let s be a system state with current execution-
context descriptor d such that s.active-ec d = (Γ, p). Then, depending on p, there is the
following transition for the error statement.

23

4 Pseudo-Code Semantics

• p = [s1, . . . ,→ error, . . . , sn]:

There is a transition to the state

(

s.σ, s.active
(

d 7→ (Γ, [s1, . . . , error, . . . , sn,→])
))

.

The block statement suspends the current execution context. Then a new scheduling
context is chosen to determine the new current execution-context descriptor. In between
an arbitrary number of execution-context descriptors can be activated. We split the
description of the semantics of block into the following definition (which only clears the
current scheduling context) and Definition 4.2.7, which describes the meta steps.

Definition 4.2.6 (Semantics of block). Let s be a system state with current execution-
context descriptor d such that s.active-ec d = (Γ, p). Then, depending on p, there is the
following transition for the block statement.

• p = [s1, . . . ,→ block, si, . . . , sn]:

There is a transition to the state

(

s.σ(current-sc 7→ null-desc), s.active-ec
(

d 7→ (Γ, [s1, . . . , block, → si, . . . , sn])
))

.

4.2.2 Meta Steps in the Operational Semantics

Meta steps are performed for system states without a current execution context (where
current-sc contains the null descriptor). The meta steps give rise to a huge nondeter-
ministic choice that reflects the freedom of the scheduler and the user mode programs
(which are both not contained in the specification).

Definition 4.2.7 (Meta Steps). Let s be a system state without current execution-
context descriptor (i.e. s.current-sc = null-desc). Then the following transitions are
possible.

• Execution context activation:

For all execution-context descriptors d, pseudo-code programs p = [s1, . . . , sn], and
local variable contexts Γ, there is a transition if the following conditions are met.

– The descriptor d is a live but inactive execution-context descriptor in s, and
the list of scheduling contexts of s.σ.Ec d is not empty.

– The program p is a complete pseudo-code program for one hyper call (as given
in Chapter 5).

– The environment Γ maps just the arguments of that hyper call to valid values
according to their type. Local variables are undefined in the initial Γ.

If these conditions are fulfilled there is a transition to the state

(

s.σ, s.active-ec(d 7→ (Γ, [→ s1, . . . , sn]))
)

.

24

4 Pseudo-Code Semantics

• Execution-context selection.:

There is a transition for each live scheduling-context descriptor sc-desc that fulfills
the following condition.

– The execution-context descriptor (s.σ.Sc sc-desc).ec is active, and it is mapped
to an execution context in state ready.

The transition goes to the state

(

s.σ(current-sc 7→ sc-desc), s.active-ec
)

.

4.2.3 Initial System State

The initial state is specified following the description in [Steb, Section 6] and following the
behavior of the hyper call to create new protection domains. The initial state contains
one protection domain, one execution context ec, and one scheduling context sc. In
the object space of the protection domain there are precisely two non-null capabilities:
at the index predefined-capabilities (coming from the hypervisor information page,
see [Steb, Section 6.2]) there is an execution-context capability pointing to ec, and at the
index predefined-capabilities + 1 there is a scheduling-context capability pointing
to sc. The current scheduling context is sc, which determines the current execution
context as ec.

Definition 4.2.8 (Initial System State). We give a constructive definition of the initial
system state.

• Let pd-desc, ec-desc, and sc-desc be three descriptors for protection domains, exe-
cution contexts, and scheduling contexts, respectively.

• Let os : N → CapObj-space be the function that maps all indices to the null ca-
pability, i.e. os(i) = null-cap, except that an execution-context capability and
a scheduling-context capability are at indices predefined-capabilities and
predefined-capabilities + 1, respectively:

os(predefined-capabilities) = (ec-desc),

os(predefined-capabilities + 1) = (sc-desc).

• Let pd be the protection domain that has os as its object space: pd = (os).

• Let ec be the execution context with the following fields:

ec.pd = pd-desc,

ec.sc = {sc-desc},

ec.reply-cap = null-cap,

ec.state = ready.

25

4 Pseudo-Code Semantics

• Let sc be the scheduling context that has ec-desc as its execution context field:
sc = (ec-desc).

• Let σ be the kernel state that has the following fields:

σ.Pd = ε(pd-desc 7→ pd),

σ.Ec = ε(ec-desc 7→ ec),

σ.Sc = ε(sc-desc 7→ sc),

σ.Pt = ε,

σ.Wq = ε,

σ.current-sc = null-desc.

Here ε denotes the empty partial function, which is undefined for all argument
values.

The initial system state is then defined to consist of σ with no active execution-context
descriptors:

initial-system-state = (σ, ε)

The initial state can only do an activation transition, making its only execution-context
descriptor active and thereby choosing the first hyper call. The next transition is then
an execution-context selection that sets σ.current-sc to sc-desc, thereby making ec-desc

the current execution-context descriptor. Then execution of the selected first hyper call
starts.

26

5 Pseudo-Code Description of the
Nova Hyper Calls

5.1 Create Protection Domain

5.1.1 Global Constants

The constant predefined-capabilities gives the number of capabilities that are used
for exceptions and interrupts. It is announced in the hypervisor information page,
see [Steb, 6.2]. The first free capability slot is at index predefined-capabilities.

5.1.2 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. pd-cap capability index of the new protection domain

2. utcb-address

3. cap-range capability range

The specification currently ignores the two arguments utcb-address and cap-range.

5.1.3 Pseudo Code

local variables
new-pd : protection domain descriptor

new-ec : execution context descriptor

new-sc : scheduling context descriptor

// argument checking

// if invalid-utcb-address? utcb-address then error

if nonempty-cap? self.pd.obj-space[pd-cap] then error

// create new PD

new-pd := new PD()

self.pd.obj-space[pd-cap] := new PD-cap(new-pd)

// create new EC

27

5 Pseudo-Code Description of the Nova Hyper Calls

new-ec := new EC(.pd := new-pd)

new-pd.obj-space[predefind-capabilities + 0] :=

new EC-cap(.kobj := ec-desc)

// create new SC

new-sc := new SC(.ec := new-ec)

new-pd.obj-space[predefind-capabilities + 1] :=

new SC-cap(.kobj := new-sc)

add(new-sc, new-ec.scheduling-contexts)

// delegate capabilities in cap-range from self to new-pd

5.2 Create Execution context

5.2.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. ec-cap capability index for the new execution context

2. wq-cap target wait queue

3. utcb-address

4. SP stack pointer

The specification currently ignores the arguments utcb-address and SP.

5.2.2 Pseudo Code

local variables
new-ec : execution context descriptor

wq : wait queue descriptor

// argument checking

// if invalid-utcb-address? utcb-address then error

if nonempty-cap? self.pd.obj-space[ec-cap] then error
if not is-wait-queue-cap? self.pd.obj-space[wp-cap] then error

// create EC

new-ec := new EC(.pd := self.pd)

self.pd.obj-space[ec-cap] := new EC-cap(.kobj := new-ec)

// enqueue and dispatch wait queue

28

5 Pseudo-Code Description of the Nova Hyper Calls

wq := self.pd.obj-space[wq-cap].kobj

enqueue(wq.wait-queue, new-ec)

if nonempty? wq.send-queue then
ec := dequeue(wq.send-queue)

ec.state := ready

5.3 Create Scheduling Context

5.3.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. sc-cap capability index for the new scheduling context

2. ec-cap target execution context

3. P priority

4. Q quantum length

The specification currently ignores the arguments P and Q.

5.3.2 Pseudo Code

local variables
ec : execution context descriptor

new-sc : scheduling context descriptor

// argument checking

if nonempty-cap? self.pd.obj-space[sc-cap] then error
if not is-execution-context-cap? self.pd.obj-space[ec-cap] then error

ec := self.pd.obj-space[ec-cap].kobj

// create new SC

new-sc := new SC(.ec := ec)

add(new-sc, ec.scheduling-contexts)

self.pd.obj-space[sc-cap] := new-sc

5.4 Create Wait Queue

5.4.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

29

5 Pseudo-Code Description of the Nova Hyper Calls

1. wq_cap capability index for the new wait queue

2. donate Boolean donation flag

The specification currently ignores the donate argument.

5.4.2 Pseudo Code

local variables
new-wq : wait queue descriptor

new_cap : wait queue capability

// argument checking

if nonempty-cap? self.pd.obj-space[wq-cap] then error

// create WQ

new-wq := new WQ()

self.pd.obj_space[wq-cap] := new WQ-cap(.kobj := new-wq)

5.5 Create Portal

5.5.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. cap-portal capability index for new portal

2. cap-wq index of target wait queue

3. IP instruction pointer

4. mtd message transfer descriptor

The specification currently ignores the arguments IP and mtd.

5.5.2 Pseudo Code

local variables
wq : wait queue descriptor

new-portal : portal descriptor

// argument checking

if nonempty-cap? self.pd.obj-space[cap-portal] then error
if not is-wait-queue-cap? self.pd.obj-space[cap-wq] then error

30

5 Pseudo-Code Description of the Nova Hyper Calls

wq := self.pd.obj-space[cap-wq].kobj

new-portal := new Portal(.wq := wq)

self.pd.obj-space[cap-portal] := new Portal-cap(.kobj := new-portal)

5.6 Inter-Domain Communication: Send, Call

There are actually three closely related hyper calls for sending/calling: the donating
call idc-dcall, the non-donating call idc-ncall and the simple send idc-send. We
describe them here collectively (as it is done in the Nova documentation) and use an
additional third argument, which can take one of the values dcall, ncall and send, to
distinguish between the calls.

5.6.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. portal-cap target portal index

2. mtd-send message transfer descriptor for sending

3. mode one of dcall, ncall or send

5.6.2 Pseudo Code

local variables
target : portal descriptor

wq : wait queue descriptor

partner : execution context descriptor

sc : scheduling context descriptor

// argument checking

if not is-portal-cap? self.pd.obj-space[portal-cap] then error

target := self.pd.obj-space[portal-cap].kobj

wq := target.wq

while empty? wq.wait-queue do
enqueue(wq.send-queue, self)

self.state := blocking

block
done
partner := dequeue(wq.wait-queue)

// transfer message to partner

31

5 Pseudo-Code Description of the Nova Hyper Calls

if mode = dcall then
sc := current-sc

delete(sc, self.scheduling-contexts)

sc.ec := partner

add(sc, partner.scheduling-contexts)

else
sc := null-desc

if mode = dcall or mode = ncall then
partner.reply-cap := new Reply-cap(kobj := self, .sc := sc)

partner.state := ready

if mode = dcall or mode = ncall then
self.state := blocking

block

5.7 Inter-Domain Communication: Reply and Wait

The reply-and-wait hyper call does a reply if the reply capability register of the current
execution context contains a valid reply capability. Otherwise there is no reply, and only
the wait is performed.

5.7.1 Arguments

0. self descriptor of the execution context performing the IDC; implicit argument

1. wq-cap target wait queue index

2. mtd-send message transfer register for reply

5.7.2 Pseudo Code

local variables
partner : execution context descriptor

sc : scheduling context descriptor

wq : wait queue descriptor

ec : execution context descriptor

// argument checking

if not is-wait-queue-cap? self.pd.obj-space[wq-cap] then error

if is-reply-cap? self.rp then
partner := self.rp.kobj

32

5 Pseudo-Code Description of the Nova Hyper Calls

sc := self.rp.sc

// transfer message to partner

if not sc = null-desc then
delete(sc, self.scheduling-contexts)

sc.ec := partner

add(sc, partner.scheduling-contexts)

self.rp := null-capability

partner.state := ready

wq := self.pd.obj-space(wq-cap)

enqueue(wq.wait-queue, self)

if nonempty? wq.send-queue then
ec := dequeue(wq.send-queue)

ec.state := ready

self.state := blocked

block

5.8 Capability Revocation

There is no description of capability revocation in [Steb] yet. Besides, a necessary
prerequisite for revocation is capability donation, which is not yet described in [Steb]
either. Revocation will be added to the formal specification when there is sufficient
information on the subject available in the informal Nova documentation.

33

6 Conclusions

This document formally specifies the behavior of the Nova micro-hypervisor. The main
part of the specification is given by imperative pseudo-code programs that describe
how the different hyper calls affect the kernel data structures. Apart from specifying the
behavior, the pseudo code serves a documentation purpose: because it is understandable
at an intuitive level, it augments the natural language description given in the Nova
documentation [Stea, Steb], making it much more precise.

In addition to giving the pseudo-code programs (which are almost identical to the ones
in [Steb]), this document defines the abstract kernel state using only simple set theory,
and it gives a formal semantics to the expressions and statements used in the pseudo
code.

34

7 Bibliography

[Stea] Udo Steinberg. Nova architecture whitepaper. Robin deliverable D1.

[Steb] Udo Steinberg. Nova microhypervisor interface specification. Robin deliverable
D2.

35

Index

Symbols
[s1, . . . ,→ si, . . . , sn], 21
Γ, 16
ε, 26
d.obj-space[i] := c, 19
l := new-X(. . .), 20
s −→ s′, 22
x := v, 19
x.a, 17
7→ , 6
⇀ , 6
→ , 6

A
and, 18
argument, 16
assignment

capabilities in object space, 19
kernel-object field, 19
local variables, 19

B
B, 6
block, 24

C
capability

creation, 17
execution context ∼, 12
null ∼, 12
portal ∼, 12
protection domain ∼, 11
reply ∼, 12
scheduling context ∼, 12
wait queue ∼, 12

CapObj-space, 12
CapPD, 11

CapPT, 12
CapReply, 12
CapSC, 12
CapWQ, 12
CDEC, 11
CDPD, 11
CDPT, 11
CDSC, 11
CDWQ, 11
constructor statement, 20
current execution context, 20
current execution-context descriptor, 22
current-sc, 14, 17

D
default value, 13

E
EC, 13
Ec, 14, 17
ECdesc, 10
Env, 16
environment, 16
error, 23
execution context, 13
execution context activation, 24
execution context selection, 25
execution context capability, 12

F
false, 18
field access, 17
function update, 6

G
global variable, 17

36

Index

H
hyper call

create
execution context, 28
portal, 30, 32
protection domain, 27
scheduling context, 29
wait queue, 29

idc
call, 31
send, 31

hyper call argument, 16

I
if, 23
initial system state, 25
is-EC-cap?, 17
is-PD-cap?, 17
is-Portal-cap?, 17
is-Reply-cap?, 17
is-SC-cap?, 17
is-WQ-cap?, 17

K
kernal state, 14
kernel-object constructor statement, 20

L
List[A], 7
live kernel objects, 15
local variable, 16

N
N, 6
new EC-cap, 17
new PD-cap, 17
new Portal-cap, 17
new Replay-cap, 17
new SC-cap, 17
new WQ-cap, 17
nonempty-cap?, 17
nonempty?, 17
null capability, 12
null-capability, 12
null-desc, 11

O
or, 18

P
partial function, 6
PD, 13
Pd, 14, 17
PDdesc, 10
portal, 14
portal capability, 12
protection domain, 13
protection domain capability, 11
pseudo-code program, 21
PT, 14
Pt, 14, 17
PTdesc, 10

R
reply capability, 12

S
SC, 13
Sc, 14, 17
SCdesc, 10
scheduling context, 13
scheduling context capability, 12
sequential composition, 22
system state, 21

T
true, 18

V
Value, 16

W
wait queue, 14
wait queue capability, 12
while, 23
WQ, 14
Wq, 14, 17
WQdesc, 10

37

	Executive Summary
	Introduction
	Notation

	Kernel State
	Descriptors
	Capabilities
	Kernel Objects
	Kernel State

	Pseudo-Code Semantics
	Denotational Semantics for Expressions and Simple Statements
	Expressions
	Simple Statements

	Operational Semantics for Local and Global Control Flow
	Pseudo-Code Transitions
	Meta Steps in the Operational Semantics
	Initial System State

	Pseudo-Code Description of the Nova Hyper Calls
	Create Protection Domain
	Global Constants
	Arguments
	Pseudo Code

	Create Execution context
	Arguments
	Pseudo Code

	Create Scheduling Context
	Arguments
	Pseudo Code

	Create Wait Queue
	Arguments
	Pseudo Code

	Create Portal
	Arguments
	Pseudo Code

	Inter-Domain Communication: Send, Call
	Arguments
	Pseudo Code

	Inter-Domain Communication: Reply and Wait
	Arguments
	Pseudo Code

	Capability Revocation

	Conclusions
	Bibliography
	Index

