
Formalizing Cut Elimination
of Coalgebraic Logics in Coq?

Hendrik Tews

Institute of Systems Architecture, TU Dresden, Germany
http://askra.de/

Abstract. In their work on coalgebraic logics, Pattinson and Schröder
prove soundness, completeness and cut elimination in a generic sequent
calculus for propositional multi-modal logics [1]. The present paper re-
ports on a formalization of Pattinson’s and Schröder’s work in the proof
assistant Coq that provides machine-checked proofs for soundness, com-
pleteness and cut elimination of their calculus. The formalization exploits
dependent types to obtain a very concise deep embedding for formulas
and proofs. The work presented here can be used to verify cut elimina-
tion theorems for different modal logics with considerably less effort in
the future.

1 Introduction

In [1], Pattinson and Schröder give two generic proofs of cut elimination for
propositional multi-modal logics. In their framework a concrete modal logic is
specified by a modal similarity type (i.e., a set of modal operators with arity)
and a set of one-step rules. The semantics is given by a functor T together
with a fibred predicate lifting for each modal operator. Models are T -coalgebras
together with a valuation.

Pattinson and Schröder identify semantic conditions that allow them to
prove soundness and cut-free completeness. Together, this gives the first cut-
elimination theorem. They further identify purely syntactic conditions on the
rule set that permit a syntactic cut-elimination proof. A formalization of these
proofs in a proof assistant has many benefits beyond the mere validation of [1].
The formalization permits to obtain machine checked cut-elimination proofs for a
variety of modal logics by verifying the semantic or syntactic preconditions only.
Moreover, if the utilized proof assistant permits the extraction of executable
code, then certified tautology checkers can be extracted from the completeness
proof. Again, because of the modularity of Pattinson’s and Schröder’s work,
the effort necessary for every new certified tautology checker will be relatively
small. Finally, a cut-free calculus provides the foundation for a syntactic proof of
Craig’s interpolation property (and, indeed, [1] deals with Craig interpolation as
an application). A formalization of cut-elimination therefore provides the basis

? This work was in part funded through the DFG project QuaOS.

http://askra.de/


2

for the verification of the interpolation theorem and for the extraction of certified
programs that compute interpolants.

In this paper I describe the formalization of about 2/3 of the results of [1] in the
Coq proof assistant [2,3]. From now on, I refer to the specifications, theorems and
proofs in Coq simply as the formalization. The formalization covers the generic
syntax and semantics of coalgebraic logics, soundness, completeness, semantic
and syntactic cut elimination. As an example, I use the modal logic K. The other
material of [1], in particular Craig interpolation and the examples of coalition
logic and the conditional logics CK and CK + ID are not (yet) contained in the
formalization.

The size of the formalization is considerable. There are about 400 definitions
and about 1300 theorems and lemmas, which are proved with more than 20, 000
lines of proof script in a total of 36, 000 lines of Coq code. About 6, 000 lines
of Coq deal with standard results that are used but not proved in [1] (e.g.,
completeness and cut elimination for propositional logic). With several years of
experience with the proof assistant PVS [4], I missed a few convenient features
of the PVS user interface during the work on the formalization. This led to the
implementation of automatic library compilation in Proof General [5, Sect. 11.2]
and the proof-tree visualization program Prooftree [6]. The complete Coq sources
of the formalization and some technical documentation are freely available on
the internet [7].

A formalization of this extent does always uncover a number of typos and
errors in the formalized work. It is a clear sign for the quality and accurateness
of the pen-and-paper proofs of Pattinson and Schröder that I found only 4 er-
rors beyond the level of nitpicking. The most serious one is probably that their
substitution lemma 3.14 is wrong: The modal rank does not necessarily decrease
as indicated. At first glance this seems to break the induction on modal rank in
the completeness and in the cut-elimination theorem. However, with a suitably
adapted substitution lemma, these proofs only need minor modifications. All
errors that I describe here have been discussed with Dirk Pattinson and Lutz
Schröder to confirm that these are indeed errors and not misunderstandings on
my side.

Related work. Proof theory and, in particular, cut elimination is a very nice
application for theorem proving. The formalization of cut elimination in a proof
assistant provides an additional value, because cut-elimination proofs are com-
plex and it is rarely ever the case that all cases are spelled out in pen-and-paper
proofs. A long debate about the validity of a cut-elimination proof for the prov-
ability logic GL has only recently been resolved [8,9]. Depending on their aims,
different authors use different approaches for their formalization of proof the-
ory. Some use a shallow embedding of proofs and formalize only provability
without an explicit representation of object-logic proofs (e.g., [10,11]). For cut
elimination, one usually prefers a deep embedding of proofs, where object-logic
proofs are terms and can be manipulated in the meta logic of the proof assis-
tant (e.g., [9,12]). Formalizations in Isabelle/HOL that use a parametric rule
set (e.g., [9,12]) need a well-formedness predicate on proof trees. The formal-



3

ization presented here uses a deep embedding for formulas and proofs and a
shallow embedding for models. The data types for formulas and proofs rely on
dependent types to express the necessary side conditions in a very concise way
without well-formedness predicates. The present work has some similarities with
the work of Chapman [13] in that the formalization covers many different log-
ics. In a sense, the scope of [13] is much broader, because it is not limited to
propositional modal logics. However, while Chapman focuses on inversion, the
present work proves soundness, completeness and cut elimination. Moreover, the
framework of Chapman is not applicable to propositional modal logics, because
its modal rules are, in general, not invertible.

Outline. This paper has a clear presentation problem. In order to be self-
contained it should comprise the formalized material of [1], which is already
at odds with the page limit. Describing several thousand lines of Coq speci-
fication and proofs at a level where the reader can follow the development is
simply impossible. This paper must therefore focus on a few points of the for-
malization. Section 2 introduces a few aspects of Coq’s logic and specification
language. Section 3 presents in detail the deep embedding of coalgebraic logics
that is used in the formalization. Section 4.3 high-lights interesting aspects of
the formalization. In particular, this section discusses the differences between [1]
and the formalization and the errors that I found. Section 5 gives an overview
of the main results of the formalization. Section 6 concludes.

Up to the end of Section 3, this paper is self-contained. Section 4.3 and Sec-
tion 5 can be read at a high level without particular knowledge of coalgebraic
logics and without access to the source code of the formalization. However, for
accurateness, I provide a few technical details in Section 4.3 that require famil-
iarity with the proofs of [1]. Coq definitions that have been omitted for space
reasons can be looked up in the documentation of the formalization [7].

Acknoledgements. I thank Dirk Pattinson and Lutz Schröder for several discus-
sions on their paper.

2 Coq Preliminaries

In Coq, Type is a keyword that refers to one element in the infinite hierarchy of
type universes in Coq. So A : Type simply means that A is a type. Prop is the
type of propositions, which may or may not have a proof. Similar to higher-order
logic, a set over A is conveniently modeled as a function A → Prop.

In contrast to higher-order logic, Coq does not distinguish between types
and terms. In Coq, there are only terms and every term has a type, which is
a term again. Therefore, application is always written in the usual postfix way,
even for terms that represent types at the conceptual level. For instance, as
usual, f a stands for the application of function f to argument a. Using the same
application, list A stands for the application of the type constructor list to type
A, that is, for the lists over A, and list (list A) stands for the lists of lists over A.



4

In Coq, a propositions is a type whose inhabitants are its proofs. A proof for
an implication F → G is a function that maps proofs of proposition F to proofs
of proposition G. Consequently, the simple arrow denotes both, function types
A → B and implications F → G.

Frequently used parameters can be declared as Variable’s in Coq. They are
then automatically added to any definition in which they occur, saving the ex-
plicit declaration in each of them. The reader should understand a Variable as
an arbitrary but fixed element of the given type. The Coq definitions and lem-
mas included in this paper do usually not mention declared variables. This is
not always correct, but hopefully less confusing.

3 A Deep Embedding for Parametric Coalgebraic Logics

This section describes the base definitions for formulas, sequents, proof rules and
proofs. The challenge in the formalization is that neither the formula syntax nor
the rule set of the object logic is fixed, because the framework of [1] covers many
different modal logics.

3.1 Formulas

Pattinson and Schröder take a simple propositional calculus with negation and
conjunction and enrich it with modal formulas of the form ♥(A1, . . . , An), where
♥ is a modal operator of arity n and the Ai are arbitrary formulas. The modal
operators are drawn from a modal similarity type Λ. The whole development
of [1] is parametric in Λ. In Coq, I define the type of Λ as a dependently typed
record as follows.

Record modal operators : Type :=
{ operator : Type; arity : operator → nat }.

The modal operators are given as an arbitrary type, the field arity determines
their arity.

The following piece or source code shows the variable declarations for V,
the set of propositional variables, and for L, the modal operators. They are
used in almost all files of the formalization. Pattinson and Schröder assume the
propositional variables to be a countably infinite set. This assumption will be
explicitly added where needed.

Variable V : Type.
Variable L : modal operators.

Inductive lambda formula : Type :=
| lf prop : V → lambda formula
| lf neg : lambda formula → lambda formula
| lf and : lambda formula → lambda formula → lambda formula
| lf modal : forall(op : operator L),

counted list lambda formula (arity L op) → lambda formula.



5

The keyword Inductive introduces an inductive data type that is generated
in the usual way from the given constructors. The type of formulas is called
lambda formula here and the constructors have an lf prefix, because Pattinson
and Schröder use F(Λ) to denote it. The last constructor, lf modal, for modal
formulas, has a dependent type. It maps an operator op and a list of formulas
to a new formula. In this paper, I write record selection as function application:
operator L selects the type of operators and arity L op applies op to the arity
function. The second argument of lf modal must be a counted list to ensure that
its length matches the arity of op. For a type A and a natural number n, the
type counted list A n contains the lists over A of length n.1 The use of dependent
types is crucial here to capture the meaning of arity for modal operators.

3.2 Sequents

Pattinson and Schröder use a single-sided Gentzen-style sequent system. Se-
quents are defined as finite multisets of formulas. Multisets can be formalized
as functions A −→ N or as a quotient type. In Coq both approaches have their
drawbacks, because predicate extentionality, function extentionality as well as
Hilbert’s ε operator need additional axioms. I therefore decided to treat sequents
as a setoid. A setoid is a type equipped with an equivalence relation, which rep-
resents the intended equality. As underlying type I simply use lists of formulas.
Two such lists are equivalent, if one is a reordering or permutation of the other.
In the formalization, I use the equivalence relation explicitly without relying on
the Coq library of setoids.

Definition sequent : Type := list lambda formula.

Inductive list reorder(A : Type) : list A → list A → Prop :=
| list reorder nil : list reorder [] []
| list reorder cons : forall(a : A)(l1 l2 : list A)(n : nat),

list reorder l1 l2 → list reorder (a :: l1) ((firstn n l2) ++ a :: (skipn n l2)).

The equivalence relation on sequents is called list reorder, because it is used for
other types as well. It is defined here as an inductive relation on lists of an
arbitrary type. The first constructor proves that the empty list is a reordering
of itself. The second constructor proves that, whenever l1 is a reordering of l2,
then also a :: l1 is a reordering of the list obtained by inserting a at an arbitrary
position in l2. The functions firstn and skipn are from the Coq library. They
return and cut off, respectively, the first n elements of a list; ++ denotes list
concatenation.

The advantage of using lists of formulas as sequents is its simplicity. Many
proofs can simply be done by induction on the list structure. The disadvantage
is that the intended equality on sequents is not builtin: It always needs explicit
treatment and, if forgotten, it may happen that a property holds for one sequent
but not for some reordering of it.

1 See [7] for the definition of counted list and some other basic Coq material.



6

(Ax)
` Γ, p,¬p

` Γ,A ` Γ,B
(∧)

` Γ,A ∧B
` Γ,¬A,¬B

(¬∧)
` Γ,¬(A ∧B)

` Γ,A
(¬¬)

` Γ,¬¬A
` Γ,A ` ∆,¬A

(cut)
` Γ,∆

Fig. 1. Propositional rules

3.3 Rules and Rule Sets

A proof rule is a record with the assumptions and the conclusion.

Record sequent rule : Type := {assumptions: list sequent; conclusion: sequent}.

Pattinson and Schröder do not distinguish between rules and rule instances:
Proofs may only contain rules that appear literally in the respective rule set.
For the propositional part of the calculus Pattinson and Schröder use the rule
schemata in Figure 1. Because of the generice nature of [1], the modal rules of
the calculus are not specified. Pattinson and Schröder only require that modal
rules are one-step rules, see [1, Def. 3.3]. A one-step rule with k assumptions
looks as follows:

` a11, . . . , a1n1
, ¬b11, . . . ,¬b1m1

· · · ` ak1 , . . . , aknk
, ¬bk1 , . . . ,¬bkmk

` ♥1(. . .),♥2(. . .), . . . , ¬♥′
1(. . .),¬♥′

1(. . .), . . .

A rule of this form must fulfill 4 conditions in order to be a one-step rule:
(1) all aij and bij must be variables, (2) the conclusion must not be the empty
sequent, (3) all arguments of the modal operators in the conclusion must be (non-
negated) variables and, finally, (4) all variables of the assumptions must appear
in the conclusion.2 In the framework of Pattinson and Schröder, a specific logic
is specified by a set R of one-step rules, among others. Proofs may contain rules
of the set S(R) of weakened substitution instances of R. The set S(R) contains
all rules Γ1σ . . . Γnσ / Γ0σ,∆ for a one-step rule Γ1 . . . Γk/Γ0 ∈ R, an arbitrary
substitution σ and an arbitrary weakening context ∆ [1, Def. 3.5].

Rules are formalized as predicates on the type sequent rule. For instance, for
the (∧)-rule we have the following definition.

Definition is and rule(r : sequent rule) : Prop :=
exists(sl sr : sequent)(f1 f2 : lambda formula),

assumptions r = [sl ++ f1 :: sr; sl ++ f2 :: sr] ∧
conclusion r = sl ++ (lf and f1 f2) :: sr.

It is easy to see that is and rule is closed under sequent reordering in the following
sense: Let s be the conclusion of a rule r, then, for every reordering s′ of s
there exists a rule r′ such that s′ is the conclusion of r′. This property is called
rule multiset in the formalization. It is proved for all rule sets and ensures that
provability is closed under reordering.

2 Condition (4) is missing in [1, Def. 3.3], see Section 4.3 below.



7

3.4 Proofs

To avoid confusion, one must distinguish between meta-logic proofs and object-
logic proofs. The former are proofs in Coq (the meta logic), to establish properties
of the latter. An object-logic proof is a proof in some coalgebraic logic.

Object-logic proofs are finite trees made of rule applications and hypotheses.
Because Pattinson and Schröder frequently change the rule set and the hypothe-
ses, I decided to make object-logic proofs parametric in the hypotheses and the
rule set. Cut elimination is the main concern of the formalization. I therefore
define object-logic proofs as a data type, whose elements can be manipulated by
functions and meta-logic proofs. In the sense of [9] I use a deep embedding for
derivations and rules (and variables).

Inductive proof(rules : set sequent rule)(hypotheses : set sequent)
: sequent → Type :=

| assume : forall(gamma : sequent),
hypotheses gamma → proof rules hypotheses gamma

| rule : forall(r : sequent rule), rules r →
dep list sequent (proof rules hypotheses) (assumptions r) →

proof rules hypotheses (conclusion r).

The type constructor for object-logic proofs takes three arguments: proof r h s
is the type of proof trees with conclusion sequent s using rules and hypotheses
from r and h, respectively. In a given proof tree, the sets of rules and hypothesis
are constant throughout the tree (because these arguments are before the colon
in the inductive definition). In contrast, the sequent may change: a proof tree
of type proof r h (lf and f g) typically contains subtrees of type proof r h f and
proof r h g.

The constructor assume is for hypothesis leafs in the proof tree. It takes two
arguments: the hypothesis gamma and a proof that gamma is indeed a member
of the hypotheses. The constructor rule is for rule applications. It takes three
arguments: a rule r, a proof that r is in the set of rules and a list of sub-proofs,
one for each assumption of r. With all arguments present, it constructs a new
proof tree for the conclusion of r.

The type dep list of dependently typed lists, which occurs in the third ar-
gument of constructor rule, is slightly involved. Let T be a type constructor of
arity one, A be a type and [a 1; a 2; ...; a n] be a (conventional) list over A. Then,
dep list A T [a 1; a 2; ...; a n] is a list of length n with the first element having
type T a 1, the second having type T a 2, and so on until the last element of type
T a n. In the definition of object-logic proofs above, T is the partial application
(proof rules hypothesis) that maps any sequent s to the type of proof trees with
conclusion s. Therefore, dep list sequent (proof rules hypotheses) (assumptions r)
is the type of an inhomogeneous list that contains one proof for each assumption
of the rule r.



8

3.5 Provability

Provability in the object logic is now straight-forward:

Definition provable(rules : set sequent rule)(hypotheses : set sequent)
(s : sequent) : Prop :=

exists(p : proof rules hypotheses s), True.

Provability is not closed under reordering of the conclusion. This property is
established as lemma.

Lemma multiset provability :
forall(rules : set sequent rule)(hypothesis : set sequent)(s r : sequent),

rule multiset rules →
sequent multiset hypothesis →
list reorder s r →
provable rules hypothesis s →

provable rules hypothesis r.

Here, sequent multiset ensures that the set of hypothesis is closed under reorder-
ing and rule multiset ensures the same for rules, as explained before.

It is worth noting again the succinctness of the deep embedding of coalgebraic
logics in Coq. The definitions can be expressed in less than 20 lines and rely only
on the type constructors list, dep list and counted list, where the first is from the
Coq standard library and the other two are well-known under various names in
the Coq literature. The dependent typing handles all side conditions. Separate
predicates to ensure well-formedness of formulas and proofs are not necessary.

4 Highlights of the Formalization

This section presents some interesting aspects of the formalization, including
the differences between [1] and the formalization and the few errors that the
formalization revealed. Readers not familiar with [1] can safely skip over the
technical details, which are only provided here for accurateness. Missing Coq
definitions are described at a high level, readers interested in the source code are
referred to [7].

4.1 Insufficient Intuitionistic Meta Logic

The object logic of Pattinson and Schröder is a classical logic and they also
use classical logic in their reasoning. The logic of Coq is, however, intuition-
istic. In Coq, neither ¬¬P → P nor P ∨ ¬P can be proved in general. Ob-
viously, one has to expect, that some results of Pattinson and Schröder are
not provable in Coq. One can make Coq classical, by assuming, for instance,
forall(P : Prop), ¬ (¬P) → P as an axiom, which is available in a certain mod-
ule of the standard library. Instead of the axiom, I prefer to use a property that



9

must be explicitly listed in the assumptions of those results that depend on clas-
sical logic. The property, which is called classical logic, is clearly visible in the
sources and one can easily determine why theorems depend on it.

The points where classical reasoning is needed depends crucially on the en-
coding of sequents into formulas and on the fact that disjunction is encoded as
negated conjunction in the object logic. The encoding of sequents into formulas is
used for the semantics of sequents. Pattinson and Schröder associate the formula
Γ̌ =

∨
Γ with the sequent Γ and set JΓ K = JΓ̌ K. Defining the finite disjunction∨

Γ with an existential quantifier (i.e., (A1, . . . , An)̌ = ∃i . Ai) is inappropriate,
because the object logic does not contain quantification. I therefore use an iter-
ative definition (i.e., (A,Γ )̌ = A∨ Γ̌ ) which results in (A1, A2)̌ = ¬(¬A1∧¬A2),
because disjunction is syntactic sugar in the object logic.

For sequents with two or more formulas, the translation into formulas leads
to some kind of Gödel-Gentzen double-negation translation. Therefore, a bit
unexpected, the (Ax) rule can be proved sound without using classical logic,
because ¬(¬P ∧ ¬¬P ) is an intuitionistic tautology (contrary to P ∨ ¬P ).

In contrast, the soundness of the (cut) rule depends on classical logic. Con-
sider the case where Γ is the empty sequent and ∆ contains one formula B.
Then, soundness of (cut) amounts to A ∧ ¬(¬B ∧ ¬¬A) → B, which is not an
intuitionistic tautology, in contrast to A ∧ (B ∨ ¬A)→ B.

The second point where classical logic is needed in the formalization is the
upward correctness of the (¬¬) rule, which is needed in the completeness proof.
However, classical reasoning is here only required for the case where Γ is empty.
For non-empty Γ the double-negation translation makes the statement provable.

Because of the effects of the double-negation translation, the soundness of
the calculus with the (cut) rule and the completeness depend on classical logic.
Soundness without (cut) can be proved in intuitionistic logic.

There is only one third point in the whole formalization that requires
classical logic. This is a technical point inside Proposition 4.13, which is the
base result for the completeness proof.

4.2 Differences in the Formalization

This subsection describes the important differences between the formalization
and [1] and mentions some other noteworthy points. Errors and omissions that
the formalization revealed are discussed in the next subsection.

Non-Negative Modal Rank. The modal rank of a formula or sequent is the
maximal nesting level of modal operators in it. Purely propositional formulas
have modal rank 0. Many proofs in [1] work by induction on the modal rank.
Pattinson and Schröder occasionally use the modal rank −1 to avoid a case
distinction, see for instance [1, Lem. 3.7]. No formula has rank −1.

For simplicity, the formalization uses natural numbers for the modal rank.
To accommodate −1, the modal rank in the formalization is increased by one.
That is, purely propositional formulas have rank 1, the formula ♥(p) has rank 2



10

for a propositional variable p, and so on. No formula has rank 0, but the empty
sequent has rank 0.

Unused Results with Difficult Proofs. A few lemmas have been omitted
from the formalization, mostly because no other results depend on them and they
have a relatively difficult proof. One example is point 2 of Proposition 3.2, which
recalls that the propositional rules including (cut) are complete with respect to
propositional consequence. The proof of this result requires compactness, which
is difficult to capture in the intuitionistic logic of Coq. The second example is
the depth-preservation proof of Lemma 3.13, which is missing in the paper and
which I discuss in the next subsection. The last example is Proposition 4.5 in [1]
about one-step completeness. In coalgebraic logics, one-step completeness is a
technical condition on the modal rules that implies completeness of the whole
calculus. Proposition 4.5 states that it is sufficient to consider finite sets only
for one-step completeness. This proposition is apparently only needed for the
example of coalition logic.

Changes in the Syntactic Cut-Elimination Theorem. In [1], Proposi-
tion 5.6 for syntactic cut elimination states three properties together. First the
admissibility of the non-atomic axiom rule, second the admissibility of contrac-
tion and third the admissibility of cut-elimination. Pattinson and Schröder prove
all three properties in one mutual induction on the modal rank. In their proof,
the induction step for non-atomic axioms of rank n+ 1 depends on cut elimina-
tion on rank n.

In the formalization I use two substitution lemmas (which are both derived
from a more general result). One for the rule set including (cut) and one for
the rule set without (cut). The latter one permits me to eliminate cut from the
rule set before applying the substitution lemma. Then, the proof for non-atomic
axioms in the formalization only requires cut elimination on purely propositional
formulas of rank 0. Therefore, the result for non-atomic axioms is a separate
proposition in the formalization, which is proved before the remainder of 5.6.

Injective Substitutions. Pattinson and Schröder use injective substitutions
at two points in the syntactic cut-elimination proof, because injective substitu-
tions preserve inclusion of multisets under certain conditions. (More accurately,
Γ ⊆ ∆ implies Γσ ⊆ ∆σ for sequents Γ and ∆ when σ is injective, Γ is a
conclusion of a one-step rule and ⊆ denotes inclusion on multisets.) For obtain-
ing an injective substitution, they write, “We may factorise σ = σm ◦ σe where
σe is a renaming and σm is an injective substitution” [1, page 29]. To avoid
non-constructive definitions, I use a slightly weaker factorization. For a sequent
Γ and a substitution σ I construct an injective σ′

m and a renaming σ′
e such

that only Γσ = Γσ′
eσ

′
m, while, in general, σ 6= σ′

m ◦ σ′
e. Nevertheless, the cited

sentence is one of the sentences with the biggest formalization overhead that I
encountered. It required about 1500 lines of Coq and one week to construct σ′

m

and σ′
e out of σ and to prove the necessary properties.



11

4.3 Omissions and Errors

In this subsection I discuss the non-trivial problems in the formal development
of [1]. During the intense work on the formalization I also discovered a number of
missing side conditions and obviously missing assumptions. These points are not
included here. The fact that there are only 4 non-trivial problems in the proofs
of [1] and that they have only negligible consequences for the main theorems,
shows the accuracy of the pen and paper proofs of Pattinson and Schröder.

One Step Rules. The definition of one-step rules in [1] omits a side condition
on the propositional variables: Just as described in Section 3.3, one must actually
require that the assumptions do only use propositional variables that do appear
in the conclusion. This condition is needed for those proofs that proceed by
induction on the modal rank. For a substitution instance of a one-step rule,
these proofs simply invoke the induction hypothesis on the assumptions of the
rule. For this the modal rank of the assumptions must be smaller than the one
of the conclusion. The simplest way to ensure this on substitution instances of
one-step rules is the side condition on propositional variables.

In Coq, the fixed definition looks as follows:

Definition one step rule(r : sequent rule) : Prop :=
every nth prop sequent (assumptions r) ∧
simple modal sequent (conclusion r) ∧
conclusion r 6= [] ∧
every nth

(fun(s : sequent) ⇒
incl (prop var sequent s) (prop var sequent (conclusion r)))

(assumptions r).

The predicate every nth P l is equivalent to Forall3 from Coq’s standard library,
using a different and, for my purposes, more convenient definition. It expresses
that P holds on all elements of the list l. The predicates prop sequent and
simple modal sequent express the constraints on the shape of the formulas in
the assumptions and the conclusion, respectively. The predicate incl l1 l2 from
the standard library holds if every element in l1 appears in l2 (regardless of mul-
tiplicity and order). The function prop var sequent : sequent → list V collects the
propositional variables in a sequent.

Missing Proof for Depth Preservation. The inversion Lemmas 3.12
and 3.13 of [1] state that the inverted rules of (∧), (¬∧) and (¬¬) are depth-
preserving admissible. This means, for instance, for the (∧) rule, that, if Γ,A∧B
is provable, then so are Γ,A and Γ,B with proof trees of the same or smaller
size. The Lemmas 3.12 and 3.13 differ in the rule set for which they make this
statement. Lemma 3.12 makes the statement for proofs using the propositional
rules only while Lemma 3.13 applies to proofs using propositional as well as
modal rules.

3 Note the case! Forall differs from the keyword forall.



12

The proof of Pattinson and Schröder for 3.13 uses their Lemma 3.9, which
states an equivalence of proofs for the two different rule sets and relies then
on 3.12. The problem here is that their Lemma 3.9 makes no statement about
the size of the proof trees. So the proof of Pattinson and Schröder proves the
inversion property, but not the depth-preserving part of the statement.

Depth preservation is important for the syntactic cut-elimination proof, be-
cause this proof uses induction on the size of the proof tree. However, in the
syntactic cut-elimination proof only 3.12 is needed. Lemma 3.13 is (apparently)
never used. In the formalization of Lemma 3.13 I only prove the inversion prop-
erty and omit the depth-preservation part.

Fixed Substitution Lemma. The substitution lemma 3.14 of Pattinson and
Schröder makes the following statement. Assume that Γ is provable with rules of
modal rank at most n (implying that Γ has rank n) and that σ is a substitution
that maps propositional variables to formulas of modal rank at most k (i.e.,
σ has rank k). Then Γσ is provable with rules of modal rank n + k, using
additional assumptions from the set Axk = {¬A,A,∆ | A a formula of rank k,
∆ a sequent of rank k}. The proof is very simple: One takes the same proof
tree and substitutes a suitable element from Axk for every occurrence of the
(Ax) rule. Consider for instance Γ = ¬p, p,♥(p) of rank 1, which can directly
be proved with the (Ax) rule, and the substitution σ of rank 1 that maps p to
♥(p). Then Γσ = ¬♥(p),♥(p),♥(♥(p)) should match an assumption from Ax1,
which is impossible, because Γσ has rank 2.

The substitution lemma is used inside induction proofs on the modal rank
for sequents Γ of rank 1 and substitutions σ of rank n. The idea is to reduce the
modal rank n + 1 of Γσ to rank n of the elements of Axn, making it possible
to apply the induction hypothesis to the elements of Axn. Therefore, the trivial
change of permitting sequents of rank n + k in the set Ax in the substitution
lemma would fix the problem, but make the lemma useless.

For the formalization I define, for an arbitrary substitution σ

Axnσ = {¬pσ, pσ,∆ | p a propositional variable, ∆ a sequent of rank n}

In the substitution lemma, the proof of Γσ is permitted to use assumptions from
Axn+kσ , where n is the rank of Γ and k is the rank of σ, as before. In the proofs
using the substitution lemma, one can apply the induction hypothesis on the
two-element sequent ¬pσ, pσ, which has rank k only, and then use a suitable
weakening lemma to obtain ¬pσ, pσ,∆.

The σ parameter in the set Axnσ conveys some information through the appli-
cation of the substitution lemma. This makes it possible to use the substitution
lemma inside the proof of point 1 of Proposition 5.6 in [1], which states the ad-
missibility of the non-atomic axiom rule. Pattinson and Schröder prove a special
claim there by induction on the proof tree.

A Gap in the Completeness Proof. Proposition 4.13 in [1] states complete-
ness for rank n, that is, if Γ of modal rank n is valid in the special n-step
semantics, then it can be proved with rules of rank n. The proposition makes



13

the statement actually twice, for the rule set including (cut) and, with stronger
assumptions, for the rule set without (cut). We focus here on the proof for the
rule set including the (cut) rule. The proof proceeds by induction on the modal
rank of Γ . Inside the induction step the obligation to find a proof for Γ is made
simpler by reducing the complexity of Γ step by step. In the first step, the
propositional rules are applied until Γ has the form

¬♥1(. . .), . . . ,¬♥k(. . .), ♥′
1(. . .), . . . ,♥′

k′(. . .), ¬q1, . . . ,¬qm, q′1, . . . , q′m′ (∗)

Pattinson and Schröder make now a case distinction: Either the left part with
the modal formulas is valid or the right part with the propositional variables. In
case of the right part one can simply use the (Ax) rule to construct the needed
proof. In case of the left part one can use the one-step completeness of the rule
set (which is an assumption of the proposition) and the induction hypothesis to
obtain a proof for

¬♥1(. . .), . . . ,¬♥k(. . .), ♥′
1(. . .), . . . ,♥′

k′(. . .) (†)

The gap that remains in the proof of Pattinson and Schröder is how to obtain
a proof of (∗) from a proof of (†). One obviously only needs a weakening lemma
for the rule set including (cut). However, this result is missing from [1]. The
weakening lemma 3.11 of [1] states weakening only for the rule set without (cut).

Weakening can be obtained with (cut) in a simple way, however, this requires
the admissibility of non-atomic axioms. Non-atomic axioms are admissible, but
this result is only proved much later in 5.6 and not available at this point. For
the formalization I therefore proof the required weakening lemma by induction
on the proof tree without using non-atomic axioms.

5 Main Theorems in the Formalization

This section presents the Coq source code of a few high-level theorems in the
formalization. For space reasons, missing definitions must be looked up in the
source code [7] if the explanations do not suffice.

The definitions and lemmas that deal with the semantics of coalgebraic logics
need as third parameter a functor T, which is declared as Variable, similar to V
and L.

Variable T : functor.

A functor is a record containing two functions, one for a mapping on types (the
objects) and one for the mapping on functions (the morphisms). Additionally,
functor contains proofs for the relevant properties, such as, for instance, the
preservation of identity morphisms.

The first theorem shown is the completeness result without (cut).

Lemma cut free completeness :
forall(enum V : enumerator V)(LS : lambda structure)

(rules : set sequent rule)(osr : one step rule set rules)(s : sequent),



14

classical logic →
non trivial functor T →
one step cut free complete (enum elem enum V) LS rules osr →
valid all models (enum elem enum V) LS s →

provable (GR set rules) empty sequent set s.

Here, enum V is an enumerator (i.e., an injective function nat → V) for the vari-
ables. It is only needed for constructing substitutions inside the proof.4 The
lambda structure LS contains a predicate lifting of the functor T for each modal
operator in the modal similarity type L together with the necessary properties.
These predicate liftings are used for the semantics of the modal operators. The
universally quantified variable osr is a proof for the fact that rules forms a set
of one-step rules. This property appears as a quantified variable instead of as
an assumption, because it is needed as argument of one step cut free complete,
which expresses that the rule set rules is one-step cut-free complete with respect
to the lambda structure LS. The predicate valid all models ensures that the se-
quent s is valid in all models, while non trivial functor T ensures that there is at
least one such model. The term (enum elem enum V) produces one variable as
witness that the set of variables is not empty. Both one step cut free complete
and valid all models are only well-formed for non-empty variables sets V.

The next theorem is semantic cut elimination. Its proof first uses the sound-
ness of the logic to derive the validity of those sequents that possess a proof. It
then relies on cut free completeness to prove the existence of a cut-free proof.

Theorem semantic admissible cut :
forall(enum V : enumerator V)(LS : lambda structure)

(rules : set sequent rule)(osr prop : one step rule set rules),
classical logic →
non trivial functor T →
one step sound (enum elem enum V) LS rules osr prop →
one step cut free complete (enum elem enum V) LS rules osr prop →

admissible rule set (GR set rules) empty sequent set is cut rule.

Here, we have the additional assumption one step sound that ensures the one-
step soundness and thereby soundness. The predicate is cut rule captures all
instances of (cut) and admissible rule set R H C expresses that all rules in C are
admissible for the rule set R and the assumptions H.

Finally, here is the syntactic cut elimination theorem. Syntactic cut elimina-
tion works by moving applications of the cut rule upwards in the proof until they
finally disappear. The theorem depends on two additional Variables: a decidable
equality relation on the operators and on the propositional variables.

Variables (op eq : eq type (operator L)) (v eq : eq type V).

4 Actually, all proofs in the formalization only require finitely many distinct variables.
The number of variables needed depends on the syntactic structure of the sequent s.
Just like Pattinson and Schröder I simply assume infinitely many variables, because
a suitable finite upper bound has not been identified yet.



15

Theorem syntactic admissible cut : forall(rules : set sequent rule),
countably infinite V → one step rule set rules →
absorbs congruence rules →
absorbs contraction op eq v eq rules →
absorbs cut op eq v eq rules →

admissible rule set (GR set rules) empty sequent set is cut rule.

This theorem also needs an enumerator for V (provided by countably infinite)
and the one-step property for rules, but here these points appear as conventional
assumptions. The other assumptions are the three absorption properties, where
the latter two need the decidable equalities.

Comparing the two cut elimination statements, we see that the syntactic one
can be proved in intuitionistic logic and makes no assumptions on the functor T.

As an example, the formalization currently contains only the modal logic K
(see e.g., [14]). Its purpose is to ensure that the general results of the formaliza-
tion are applicable to a concrete logic and that all assumptions can be discharged
as expected. For this example, natural numbers are used as propositional vari-
ables and the only modal operator � is defined with an inductive date type. The
example contains an application of each of the main results of the formalization.
Here I only show syntactic cut elimination.

Theorem k syntactic cut :
admissible rule set (GR set k rules) empty sequent set is cut rule.

This theorem uses the equivalent but non-standard rule set k rules, which per-
mits cut elimination, see [1, Ex. 4.6]. The theorem is proved with the theorem
syntactic admissible cut and suitable lemmas for the absorption properties of K.

6 Conclusion and Future Work

This paper presents the formalization of about 2/3 of [1] in the proof assistant
Coq. The formalization contains the necessary definitions to formalize and prove
the results on soundness, completeness and cut elimination of coalgebraic modal
logics. The formalization contains the modal logic K as example, ensuring that
definitions and theorems can be employed. Using this formalization, it should be
possible to obtain machine checked cut-elimination proofs and certified tautology
checkers for a number of different modal logics with relatively little effort.

There are many interesting directions for continuing the work presented here.
First, it would be nice to cover more examples in order to obtain machine checked
cut-elimination theorems for a number of different modal logics. Second, it would
be interesting to also formalize the remainder of [1], in particular the results on
the interpolation property. The third point are certified programs, for instance,
for checking tautologies in a particular modal logic. From definitions and proofs,
Coq can extract Haskell or OCaml programs, which are correct by construction.
Because the completeness proof of Pattinson and Schröder is constructive, one
should be able to obtain a tautology checker from it. In the current form of



16

the formalization, program extraction does not work, because the completeness
result is formulated as theorem only. For program extraction one must restruc-
ture the completeness result into the function that constructs the proof and a
correctness proof of that function.

References

1. Pattinson, D., Schröder, L.: Cut elimination in coalgebraic logics. Information and
Computation 208 (2010) 1447–1468

2. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project. (2012) Version 8.4.

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

4. Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining spec-
ification, proof checking, and model checking. In Alur, R., Henzinger, T., eds.:
Computer Aided Verification. Volume 1102 of LNCS., Springer (1996) 411–414

5. Aspinall, D., Kleymann, T.: User Manual for Proof General 4.2. LFCS Edinburgh.
(September 2012) Available at http://proofgeneral.inf.ed.ac.uk.

6. Tews, H.: Automatic library compilation and proof tree visualization for Coq Proof
General. Presentation at the 3rd Coq Workshop, Nijmegen, 2011

7. Tews, H.: Formalized Cut Elimination of Coalgebraic Logics: Source Code and Doc-
umentation. TU Dresden. (April 2013) Available at http://askra.de/science/

coalgebraic-cut.
8. Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability logic resolved.

In Areces, C., Goldblatt, R., eds.: Advances in Modal Logic, College Publications
(2008) 67–86

9. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied to
provability logic. In Fermüller, C.G., Voronkov, A., eds.: Logic for Programming,
Artificial Intelligence, and Reasoning; Proceedings of LPAR-17. Volume 6397 of
LNCS., Springer (2010) 263–277

10. Doczkal, C., Smolka, G.: Constructive completeness for modal logic with transitive
closure. In Hawblitzel, C., Miller, D., eds.: Certified Programs and Proofs - Second
International Conference. Volume 7679 of LNCS., Springer (2012) 224–239

11. Chapman, P., McKinna, J., Urban, C.: Mechanising a Proof of Craig’s Interpolation
Theorem for Intuitionistic Logic in Nominal Isabelle. In Autexier, S. et. al., ed.:
Proceedings of Intelligent Computer Mathematics, AISC and Calculemus 2008.
Volume 5144 of LNCS., Springer (2008) 38–52

12. Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic. In: 15th
International Conference on Theorem Proving in Higher Order Logics, Proceedings.
Volume 2410 of LNCS., Springer (2002) 131–147

13. Chapman, P.: Tools and techniques for formalising structural proof theory. PhD
thesis, University of St Andrews (June 2010) available at http://hdl.handle.

net/10023/933.
14. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press (2002)

http://proofgeneral.inf.ed.ac.uk
http://askra.de/science/coalgebraic-cut
http://askra.de/science/coalgebraic-cut
http://hdl.handle.net/10023/933
http://hdl.handle.net/10023/933

	Formalizing Cut Elimination of Coalgebraic Logics in Coq
	Introduction
	Coq Preliminaries
	A Deep Embedding for Parametric Coalgebraic Logics
	Highlights of the Formalization
	Main Theorems in the Formalization
	Conclusion and Future Work


