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Abstract. This paper presents the preemption abstraction, an abstrac-
tion technique for lightweight verification of one sequential component
of a concurrent system. Thereby, different components of the system are
permitted to interfere with each other. The preemption abstraction yields
a sequential abstract system that can easily be described in the higher-
order logic of a theorem prover. One can therefore avoid the cumbersome
and costly reasoning about all possible interleavings of state changes of
each system component. The preemption abstraction is best suited for
components that use preemption points, that is, where the concurrently
running environment can only interfere at a limited number of points.

The preemption abstraction has been used to model the IPC subsys-
tem of the Fiasco microkernel. We proved two practically relevant prop-
erties of the model. On the attempt to prove a third property, namely
that the assertions in the code are always valid, we discovered a bug that
could potentially crash the whole system.

1 Introduction

In this paper we focus on the verification of the following kind of systems: a
component C is running in a concurrent environment E , where E interferes asyn-
chronously with the component C by, for instance, changing some state variables
of C. The goal is to prove some specified property about the component, regard-
less of how the environment behaves.

This kind of problem appears for instance in operating-system verification.
Every recent operating system permits several threads of execution running in
quasi parallel, even on a system with only one processor core. Typically each
such thread might invoke any operating-system call. Nevertheless, the effects
the different threads might have on each other are relatively limited. For the
verification of the operating system, it is therefore often sufficient to consider only
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Fig. 1. Environment (thread II + III) asynchronously interfering with thread I. The
zigzags in the lines represent system calls: the threads are executing user code in the
solid lines and operating-system code in the dotted lines. Dashed lines and separated
dots indicate that the thread is not scheduled.

one thread of execution, and to model all the threads that can asynchronously
affect the given thread as some kind of environment.

As an example, Figure 1 shows three threads. Initially, thread I and thread II
want to exchange a message via inter-process communication (IPC), while thread
III is sleeping. Thread II and thread III can be considered as the environment
of thread I, that is, they can asynchronously affect thread I. When thread I
performs a system call in order to send a message to thread II, the environment
could react in several ways (where only the last one is displayed in Figure 1):

– The environment could do nothing, corresponding to a situation where
thread II never performs the system call necessary to receive from thread I.

– The environment could engage in IPC with thread I, corresponding to a
situation where thread II successfully receives the message from thread I.

– The environment kills thread I, as displayed in Figure 1. Here thread II starts
the system call to receive from thread I, but then an external interrupt wakes
up thread III. Thread III immediately gets scheduled (for instance because
it has a higher priority) and kills thread I.

It is important to notice here that the number of different effects that the en-
vironment can have on thread I, is rather limited. Although every thread runs
arbitrary user code, there is only a limited number of system calls and only few
of them can have an effect on thread I.

Only few operating-system kernels are fully interruptible, meaning that re-
scheduling of a different thread can occur at every point in every kernel proce-
dure. Maintaining consistency of kernel data structures for a fully interruptible
kernel is difficult, therefore many kernels disable rescheduling or even interrupts
over large portions of the kernel. When real-time properties are a concern, a
kernel design with preemption points is sometimes used. In this design, inter-
rupts (and therefore rescheduling) are generally disabled, except at well-defined
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points —the preemption points. Pending interrupts are then delivered only at
these points. Kernel data structures are synchronized before any preemption
point so that rescheduling a different thread (which might engage in different
kernel activities) can be done without danger of corruption.

In this article we describe and use the preemption abstraction, an abstraction
technique tailored for this kind of systems. The technique has been developed
for creating and verifying models in the higher-order logic of an interactive the-
orem prover. The preemption abstraction is equally well applicable in a model-
checking environment, although its benefits there will not be as remarkable as in
interactive theorem proving. We used the abstraction technique in the modeling
and verification of the inter-process communication (IPC) facilities of the mi-
crokernel Fiasco [HH01, Hoh98, HP01]. Our verification attempt identified one
programming error, although the part of the IPC subsystem that was modelled
was thoroughly tested and in daily use. The bug could only be triggered when
a specific interrupt occurred precisely in a very short time frame during the ex-
ecution of the IPC system call. It was therefore so unlikely to trigger the bug
that it could have stayed unidentified for decades.

This paper is organized as follows. The next section describes the preemption
abstraction while Section 3 describes Fiasco, in particular its IPC subsystem. In
Section 4 the PVS model is discused, with emphasis on the application of the
preemption abstraction. Section 5 comments on the properties that were verified
and on the programming error that was found. In Section 6 we evaluate the case
study and give pointers to future work. Finally, Section 8 draws conclusions.

2 The Preemption Abstraction

Consider a parallel system S, as exemplified in the introduction, with the fol-
lowing properties. S consists of an arbitrary number of threads and each thread
consists of a sequence of atomic blocks. Between each two atomic blocks there is
a preemption point, in which no computations and state changes are performed
(in practice a preemption point consist of one or two NOP instructions). For
each atomic block, each thread acquires a global lock, which is released during
the preemption points. Thus, a computation of the whole system consists of one
sequential interleaving of all the atomic blocks. Apart from the sequential inter-
leaving, the threads may interfere in arbitrary ways, for instance, a thread t1 may
change the state of another thread t2. Because of the sequential interleaving, t2
is of course waiting in a preemption point when t1 changes its state.

The preemption abstraction focuses on one selected thread t. All other threads
are considered as the environment of t. When t is waiting for the global lock in a
preemption point, any thread from the environment can change the state of t. All
such potential changes are collected in the set of side effects SE. For real systems
this set would typically have a small finite cardinality, but the correctness of the
abstraction does not depend on that. In this work we assume that the events
in SE are independent, however, the abstraction could still be applied if such
dependencies are made explicit on the model.
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In the following we consider (finite) lists of side effects taken from SE. Note
that one particular side effect can occur multiple times in such a list.

The preemption abstraction A of the system S consists only of the thread t
with the following changes:

– The preemption-point function is substituted for all preemption points in
t. The preemption-point function nondeterministically chooses an arbitrary
list of side effects and executes it.

– The global lock, its acquisition and release are abstracted away.

In the preemption abstraction all the other threads of S that form the environ-
ment of t are condensed into the preemption-point function.

The preemption abstractionA is a sequential model of S that faithfully models
the behavior of the thread t. Under the assumption that there are no dependen-
cies between the threads the abstraction suffices to prove arbitrary (functional)
properties of t that can be proved in S. Since it takes the point of view of a single
thread, the abstraction cannot be used to prove properties about cooperating
threads. The abstraction is sound in the sense that every property proved for t
in A also holds in S. The soundness crucially depends on the completeness of
the set of side effects SE.

The main advantage of the preemption abstraction A is that it is a sequential
model, consisting of only one thread. For a description of its behavior one does
not have to consider different interleavings of atomic blocks. The abstraction
A can therefore be conveniently described as a functional model in the higher-
order logic of an interactive theorem prover. In contrast, modelling the behavior
of S with all possible interleavings of its threads in higher-order logic would be
a major hassle. The preemption abstraction is therefore absolutely necessary in
order to verify nontrivial systems S in an interactive theorem prover.

The preemption abstraction can also be applied in a model-checking context.
Because model checkers have built-in support for parallel systems the sequen-
tiality of the preemption abstraction is not an advantage per se. However, the
reduction of the system S with its arbitrarily many threads to just one thread
should make the state space much smaller. Using the preemption abstraction for
model checking remains future work.

3 Interprocess Communication in Fiasco

The Fiasco microkernel belongs to the L4 microkernel family. It has been de-
veloped since 1998 at TU Dresden, Germany. It is mainly written in C++ with
some inline assembly and assembly short-cuts for the most performance critical
system calls. In a microkernel based system many operating-system services are
implemented as separate modules, which are running as normal application pro-
grams. Therefore inter-process communication (IPC) is often the bottleneck of
microkernel based systems. With very stringent optimizations, the L4 microker-
nel interface and some of its implementations remedied this problem, achieving
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Fig. 2. Typical communication pattern for applications running on an L4 microkernel.
As before solid lines indicate user code and dotted lines indicate operating-system code.

performance within 5% of traditionally designed systems [HHW98]. The L4 fam-
ily (and other microkernels) is therefore sometimes referred to as a microkernel
of the second generation.

The Fiasco microkernel implements processes, threads, address spaces, inter-
process communication and delegation of memory resources. The only device
that the kernel controls itself is the interrupt controller. Drivers for all other
devices, such as hard disks, graphic cards and keyboards run outside of the
kernel as normal application programs.

IPC will play an important role for this paper, so let us elaborate a little bit
on it. IPC in the L4 interface is optimized for the common case of client-server
communication. There is just one system call for IPC, whose precise behavior
can be modified via certain parameters. IPC in Fiasco is always synchronous,
that is, sender and receiver must perform a rendezvous. If either the sender or
the receiver is not ready, the other party blocks. In general the IPC system call
always performs a send operation followed by a receive. Both the send and the
receive operation are optional and can be disabled via parameters to obtain a
send-only or receive-only IPC system call. If the send operation is enabled it
always sends to a specified destination thread. The receive operation can be
either open or closed. In an open receive any IPC partner is accepted, while
in a closed receive only messages from one specified thread are accepted. Both
the send and the receive operation always transfer two registers plus, optionally,
some memory contents. If some memory is copied it is called long IPC, otherwise
short IPC. Typically short IPC prevails and shared memory is used for bulk
data transfer. The time the IPC system call blocks in either the send or the
receive operation can be controlled via timeout parameters. As special cases
the timeout can be zero (abort IPC if the partner is not ready) or infinite (no
timeout).

Figure 2 shows how the IPC operation is exploited in client-server commu-
nication. At the beginning the server blocks with infinite timeout in an open
receive until client I starts a complete IPC call. This call consists of a send op-
eration and a closed receive, both with the server as IPC partner. When the
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send operation from client I to the server is complete, the server finishes its IPC
system call and starts working on the client request. Meanwhile, client I blocks
in a closed receive (typically with infinite timeout) until the server answers.

When the server finishes working on the request, it starts a new complete IPC
system call. In the send operation it sends its answer back to client I. Client I
thereby finishes its IPC system call and continues normal computation. After
sending the answer, the server blocks in an open receive waiting for the next
client. The server can thus be programmed in a loop with one IPC system call
as last statement of the loop. At server boot time, just before entering its main
loop, the server does an open receive without send operation.

In Fiasco IPC is implemented such that the sender is the active part. That is,
the sending IPC partner performs the necessary locking and copies the message.
The receiving IPC partner simply waits until some sender finished its job.1

In Fiasco, thread ID’s are 64-bit numbers. They are used to denote potential
senders and receivers. There are two special thread ID’s: the invalid thread ID,
sometimes referred to as null-thread ID, and the nil-thread ID. The nil-thread
ID can for instance be used in a closed receive with some timeout. As effect the
thread will sleep until the timeout elapses.

4 The Model

This section describes our model of Fiasco’s inter-process communication with
special emphasis on the abstraction described in Section 2.

For the formalization we chose the theorem proving approach and, in particu-
lar, we used the PVS theorem prover [OSRS01]. Section 7 describes other works
that used the model checking approach to model the same subsystem.

PVS consists of a specification language based on higher-order logic with
dependent types and predicate subtyping, and tools to create and manipulate
proofs. Its intuitive syntax is reminiscent of functional languages like Haskell.

The code that had to be modelled was written in a small subset of C++:
mainly assignments, conditionals and method calls. We reduced it even more
by abstracting most loops and splitting functions with side effects into a state
transformer plus a pure function that returns a value. This resulted in a shallow
embedding of the C++ sources in PVS.

4.1 Key Abstractions

In a real system executing on the Fiasco microkernel, many threads can run in
parallel, and each one can start an IPC system call. Therefore, the IPC code in
the kernel potentially runs in parallel with itself many times. In order to obtain a
sequential model that can be easily described in PVS, we applied the preemption
abstraction as explained in Section 2.
1 An exception are interrupts that are mapped into an IPC message to the thread that

registered for that interrupt. In this case the receiving thread is active. However,
interrupt IPC is not considered throughout this paper.
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As the first step we identified the set of side effects SE. When a thread t per-
forms an IPC operation other threads can modify the state of t in the following
way: (1) the thread t can be killed, (2) a timeout can occur meaning that t
should not wait any longer for an IPC partner to become ready, (3) the IPC
operation of t can be canceled or (4) a receiver can become ready, meaning that
t can proceed with the send part of the IPC. The side effects are modeled in
PVS with the type PreemptionAction and the function doPreemptionAction, as
we will explain in Section 4.2 below.

As a second step we focused on the IPC code of just one thread, ignoring the
rest of the system. The preemption points are replaced by the preemption-point
function, which is formalized in PVS by preemptionPoint, see Section 4.2 below.
Note, that after applying the preemption abstraction there is no scheduler left in
the model. The only effect the scheduler could have is that our thread t remains
for a longer time in some preemption point and that therefore some more side
effects accumulate.

Independently from the preemption abstraction, we decided to focus on the
core functionality of IPC. We only model short IPC between real threads (no
preemption IPC, no interrupt IPC, no long IPC). Note that we do model time-
outs in an abstract way without any notion of time in the model: A timeout side
effect can occur in any preemption point.

4.2 PVS Specification

In PVS a theory is a module that encapsulates definitions and properties. It
provides a means to hierarchically decompose a specification. Our work is com-
posed of several theories with simple dependencies among them. The theories
state and ipc contain the model and will be discussed in this section. For rea-
sons of clarity and space, we will restrict ourselves to some relevant, slightly
simplified extracts of our model. The complete specification can be obtained via
http://www.cs.ru.nl/~tamalet/.

We define ThreadPointer as an uninterpreted type, which essentially repre-
sents an arbitrary set. This set should have at least two elements, which will
be enforced by an axiom. We say that null is a ThreadPointer, and declare
NonNullTP as the set of non-null thread pointers. The nil_thread_ptr constant
points to the special nil thread (see Section 3), used to encode send-only or
receive-only IPCs

ThreadPointer: TYPE

not_empty_or_single: AXIOM ∃ (tp1,tp2: ThreadPointer): tp1 �= tp2
null: ThreadPointer
NonNullTP: TYPE = { tp:ThreadPointer | tp �= null }
nil_thread_ptr: NonNullTP

Fiasco stores the status of a thread in a bit vector. We have represented the flags
of this vector that are relevant to our model as a record with boolean fields. A
complete description of the status flags can be found in [Hoh02].

http://www.cs.ru.nl/~tamalet/
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ThreadStatus: TYPE = [# ready, cancel, dead, busy, invalid,
polling, receiving, ipc_in_progress,
send_in_progress, transfer_in_progress: bool # ]

Each thread is composed of a status, a partner to engage with in IPC and a
list of senders (named senders_waiting) containing the senders that are queued
if the receiver is busy. As explained in Section 3, the sender is the active part in
an IPC, and one of the actions a sender performs is locking the receiver. In our
abstract model, it is sufficient to know which sender owns the lock. This results
in the following representation of threads.

Thread: TYPE = [# status: ThreadStatus,
partner,lock: ThreadPointer, senders_waiting: list [NonNullTP] # ]

Though the status flags can be set/cleared individually, one usually considers a
certain combination of flags to check whether a thread is in a specific state. For
instance, to determine whether two threads are engaged in IPC, the following
tests are necessary:

inIpc(snd, rcv: NonNullTP)(s : System): bool =
LET rcv = s‘threads(rcv) , rcv_stat = rcv‘status IN

rcv_stat‘transfer_in_progress ∧ rcv_stat‘ipc_in_progress ∧
¬rcv_stat‘cancel ∧ rcv‘partner = snd

PVS-functions are explicitly parameterized with a System object representing the
global state of the machine. Moreover, each function will produce the modified
global state as a result. This state is defined as follows:

System: TYPE = [# current: NonNullTP, threads: [NonNullTP →
Thread] ,
error, timeout, fail: bool, seed: nat # ]

The field current is a pointer to the active thread, threads is a ‘dereference’
function yielding the threads of the system, error and timeout indicate if an
error or a timeout occurred, respectively, and fail is set if one of the assertions
failed. The field seed is explained below.

The manipulation of state information makes specifications needlessly com-
plex. However, with a suitable set of helper functions, one can easily avoid an
explicit state object. Particularly, the following composition operation appears
to be convenient in our description.

SystemFun: TYPE = [System → System]

>>(s1 , s2: SystemFun): SystemFun = λ (s: System):
LET s1s = s1(s) IN IF s1s‘error THEN s1s ELSE s2(s1s) ENDIF

This operation resembles standard function composition. Observe that the sec-
ond function will not be applied if the first one resulted in an error.

In the first step of our approach the set SE of possible side effects is identified.
This was done by careful examination of the possible effects concurrent threads
can have on a each other, resulting in the following set of preemption actions:
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PreemptionAction : TYPE =
{ kill, % The partner is killed
timeout, % A timeout occurs
ipc_cancelled, % IPC has been canceled
receiver_ready } % The receiver becomes ready

Next, all preemption points are replaced by non-deterministically chosen list
of preemption actions that are executed. Since PVS does not directly support
non-determinism, we introduce the following auxiliary function:

generatePAs(n: nat): list [PreemptionAction]

This function is not further specified. In a proof, this means that we cannot
assume anything about the actions appearing in the result list, hence it has to
be considered as arbitrary. The argument n is necessary for technical reasons: by
using different argument values each time generatePAs is called, different result
lists will be produced. For, had we omitted this argument, generatePAs would
have been treated as a constant, yielding the same unspecified list of preemption
actions everywhere it is called. This explains the existence of the seed field in
the system state. At each preemption point, the seed is passed to generatePAs,
and it is incremented.

The effect of preemption actions on the system state is specified by the func-
tion doPreemptionAction:

doPreemptionAction(partner: NonNullTP, allow_timeout: bool)
(act: PreemptionAction, s:System): System =

CASES act OF

ipc_cancelled: sysThreadExRegs(s‘current)(s) ,
timeout: IF allow_timeout THEN timeOut(s‘current)(s)

ELSE s ENDIF,
kill: kill(partner)(s) ,
receiver_ready: IF s‘current = partner THEN s

ELSE receiverReady(s‘current, partner)(s) ENDIF

ENDCASES

The functions sysThreadExRegs and kill basically set the cancel and dead
flags of the thread status vector, respectively, while timeOut sets the timeout
flag of the system state. The function receiverReady sets the ready and
transfer_in_progress bits on the sender and unsets ready on the receiver. En-
suring that the sender and the receiver are not the same whenever receiverReady
is called was necessary to prove certain properties; see Section 5. In Fiasco, this
is implicit since it doesn’t make sense for a thread to engage in IPC with itself 2.

Finally, we define preemptionPoint as the preemption-point function that
executes a list of preemption actions.

preemptionPoint(partner: NonNullTP, allow_timeout: bool)
(s:System): System =

2 And if it tries to, it will get deadlocked waiting for itself to become ready.
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doPAs(partner, allow_timeout)(generatePAs(s‘seed))(newSeed(s))

newSeed(s: System): System = s WITH [seed := s‘seed + 1]

doPAs(partner: NonNullTP, allow_timeout: bool)
(pas: list [PreemptionAction] )(s: System): System =

reduce(s , doPreemptionAction(partner, allow_timeout))(pas)

The function reduce is a predefined list function, similar to fold or fold left in
other languages. In essence, doPAs composes the effects of the preemption actions
occurring in the list.

These and other basic definitions form the state theory. The ipc theory con-
tains the model of the C++ functions that implement Fiasco’s IPC mechanism.
The main function of this theory is

doIpc(rcv,snd: NonNullTP, has_rcv,has_snd: bool)(s:System):System =
IF has_snd∧ has_rcv
THEN doIpcSend (rcv,TRUE) >> doIpcReceive(snd)(s)
ELSIF has_snd THEN doIpcSend(rcv, FALSE)(s)
ELSIF has_rcv THEN doIpcReceive(snd)(s)
ELSE s ENDIF

A few details of doIpcSendwill be discussed later; the definition of doIpcReceive
is unimportant for this paper.

5 Validating Some Properties

This section in based on the PVS theories prop_wakeup, prop_locks, and
prop_assertions containing our properties of interest.

Property 1: Receiver woken. Consider the send part of an IPC call of a
thread ts that transfers data to a partner thread tr. In Fiasco the sender is
the active part, that is, tr is sleeping during its receive operation. Sleeping here
means that the ready flag of tr is false, causing the scheduler to never select
tr. It is therefore essential that, after the send has been finished, the thread ts
wakes up its partner tr, such that tr can be scheduled again. This property is
formalized as follows:

receiver_woken: LEMMA

∀ (partner: Non_Null_TP)(s: System):
LET sSend = doIpcSend(partner)(s) IN

¬sSend‘error∧ inIpc(sSend‘current, partner)(sSend)
⇒ sSend‘threads(partner)‘state‘ready

The property states that if after the execution of doIpcSend there is no error
on the system state and the sender and the receiver are still engaged, then the
ready bit of the receiver is set. The proof posed no difficulty and it consisted
mainly of definition unfoldings and case distinctions.
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Property 2: Lock removed. Consider again a thread ts that wants to engage
in a send operation with tr as receiver. Before actually starting the send, ts
obtains the lock of tr to make sure that it is the only thread sending to tr. After
the send the lock must of course be released again.

lock_removed: LEMMA

∀ (rcv_ptr: NonNullTP)(s: System):
¬s‘error∧ ¬s‘threads(rcv_ptr)‘status‘invalid∧
rcv_ptr �= nil_thread_ptr ⇒

LET new_state = doIpcSend(rcv_ptr)(s) IN

new_state‘threads(rcv_ptr)‘lock = null

The property has three requirements, namely, the state of the receiver must be
valid, the receiver must not be the nil thread and there should be no error flagged
on the initial system state. Under these conditions we were able to prove that
after the execution of doIpcSend, the lock on the receiver is free.

To reduce the complexity of the proof, five lemmas were created. They assert
that the lock is released on each of the possible path taken by do_ipc_send.
This decomposition was also very helpful in making the proof more resistant to
changes in the model.

Property 3: Assertions passed. The Fiasco sources contain some assertions.
When an assertion in the kernel is violated, the system simply halts. We included
all the assertions that were expressible in our model, but some referred to things
we had abstracted from, like the CPU lock, and thus were omitted. In total nine
assertions were checked and it was in one them where the bug was found.

To find out if any of them could fail during a call to sysIpc, we added the
field fail to the system state and we defined:

assert(b: bool)(s: System): System =
IF b THEN s ELSE s WITH [fail := TRUE] ENDIF

Then the property was stated as shown next.

assertions_passed: LEMMA

∀ (rcv, snd: NonNullTP, has_rcv,has_snd: bool, s:System):
¬doIpc(rcv, snd, has_rcv, has_snd)(s)‘fail

The function doIpcSendPart contained the assertion causing the failure.

doIpcSendPart(partner: NonNullTP, b: bool): SystemFun =
tryHandshakeReceiver(partner) >>
λ(s:System): assert( ¬s‘threads(s‘current)‘status‘polling) >>
[... ]

The problem found is related to the polling bit, which is set on the sender when
it has to wait for the receiver to become ready. Essentially, the sender polls the
receiver at intervals to see if it has become ready. Once the receiver is ready and
the handshake finishes successfully, this bit should be cleared.

When trying to prove that after a (successful) call to tryHandshakeReceiver,
the polling bit is cleared, we found an execution path in the doSendWait function
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(invoked by tryHandshakeReceiver) that did not clear it. After careful exami-
nation of the model, the author of that code was contacted and it was confirmed
that indeed we had found an error.

But this was not the only complication we faced. There was also an assertion
that could not be completely verified within our model due to the abstractions
made on the sender. Since we did not model the sender as a separate thread, we
could not prove that inIpc is commutative, that is, if the sender is engaged in
IPC with the receiver, then the receiver is engaged with the sender. An axiom
was added to overcome this problem.

Proving this property was quite laborious; 78 other lemmas were used directly
or indirectly. The proofs were not intrinsically hard but cumbersome. The un-
folding of some definitions resulted in proof sequents spanning hundreds of lines
in the PVS prover. The following simple pattern can be identified in many of
the proofs: unfold definitions and give names to intermediate states (to reduce
the size of a sequent) as needed, then prove each branch using other lemmas if
needed. Thanks to our lightweight approach to model concurrency, the number
of branches was amenable to interactive theorem proving. The only proofs that
needed induction were the ones concerning the list of actions that occur at a
preemption point and the proofs dealing with the list of senders in the receiver.

6 Case Study Evaluation

In this section we share some reflections and lessons learned from our case study.
We also comment on possible directions for future work.

Main lessons learned. The case study has validated the applicability of the
preemption abstraction approach as a lightweight formal proof method for con-
current code.

Using the proof asistant PVS, we modeled sys_ipc: the function that handles
all inter-process communication focusing on the interaction between senders and
receivers. While constructing the model we followed the source code (its structure
and names) as much as possible. We focused both on a few key properties and on
the assertions that were contained in the code. Furthermore, we abstracted from
some important parts of the system, such as scheduling and Long IPC. Therefore,
this case study cannot give a full formal proof of the studied system. However,
the proofs of the studied properties significantly increased the confidence in
the studied code and, when we found the bug, we could easily point out the
corresponding place in the source code where the error occurred.

The code that was analyzed is about 3000 lines. The PVS model is about
2000 lines and the proof scripts are another 5000 lines long. Developing the
proofs took 2 man-months but checking the proofs takes just a few minutes.

We want to emphasize the fact that the bug was found thanks to an assertion
in the code. One usually thinks of assertions as just a runtime check mechanism,
but they are more than that: they describe the intended behavior of the code.
We used them to generate properties of our model of the system. Had the code
not been instrumented with assertions, we would have probably missed the bug.
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The soundness of our approach to model concurrency depends of course on
the completeness of the list of actions that may occur at preemption points. We
determined the possible events that the environment could have on thread at a
preemption point by studying the source code. We are fairly confident that our
list is exhaustive, however, a fully formal proof would also verify this assertion.

Applicability to systems without explicit preemption points. The ap-
plicability of the preemption abstraction does not depend on the presence of
explicit atomic blocks and preemption points in the software. On conventional
hardware memory access is atomic, even in systems with multiple processors.
For the preemption abstraction it is therefore not relevant whether there are
possibly several threads running truly in parallel on several CPU’s or not. The
important point is, that at the level of memory access, all activity in the system
is sequentialized. Therefore, one can think of a memory access as an atomic block
with preemption points between memory accesses.

Under this interpretation, the number of preemption points will truly be
tremendous. One clearly has to formulate the abstract model without writing out
every invocation of the preemption-point function. This can easily be achieved
with a higher-order combinator that inserts the preemption-point function after
each memory access. A legitimate question is, whether it is still possible to verify
any property in such a model. In general, the situation is admittedly hopeless.
However, systems that have been designed to run in a truly parallel environment
without the use of locks are far from the general case.

As an example let us consider a predecessor version of Fiasco that was fully
preemptable. There, a timer interrupt could occur after each assembly instruc-
tion and induce the scheduling of a different thread. This new thread could
potentially modify the state of the interrupted thread. This predecessor version
of Fiasco was written in the lock-free programming style [HH01]: To modify a
kernel data structure, a thread would first make a private copy, modify this pri-
vate copy and finally write back the new version in an atomic way (for instance
by using the compare-and-swap instruction). If the original data structure has
been modified in between, it tries the same procedure again. This way, large por-
tions of the code cannot be affected by parallel running threads, because it only
operates on data structures that the other threads do not modify. The calls to
the preemption-point function in the abstract model of such code can therefore
be treated automatically in the verification environment.

Future Work. A logical next step could be to extend the model and prove
more properties. We would start by adding preemption and interrupt senders as
well as long IPCs. It would also be interesting to prove the completeness of the
set of preemption actions. This could be done by modelling all system calls and
showing that any effect these calls can have on a running thread has already been
considered. During the first phase of this work, we would have benefited from
having a tool that, once configured, semi-automatically produces an abstract
model. How to create a general tool that yields different models depending on
the user’s needs, is an interesting research topic with much potential.
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7 Related Work

This work is based on the master’s thesis of Erik Schierboom [Sch07], in which
a first version of the model was developed and the error was spotted.

Fiasco, and in particular its IPC subsystem, has been the subject of several
case studies in the application of formal methods to real-world software. In her
master’s thesis, Endrawaty [End05] modelled the same subsystem of an earlier
Fiasco version. She used Promela as specification language and the SPIN model
checker [HPV00] to perform simulations and to verify some simple properties.
Annamalai [Ann05] extended Endrawaty’s model by adding timeouts among
other things, and proved more properties, some of which were liveness properties.
Instead of having a lightweight approach to concurrency, they run complete
threads in parallel in the model checker leading to huge state spaces. Modelling
only two threads where each does only 1 IPC, proving a property took about 8
hours, 2GBs of RAM and 8GBs of hard disk. Proving properties about several
IPCs or more than two threads was unfeasible. None of these studies found any
error in the code. The bug that we found was only introduced later, when René
Reussner rewrote Fiasco’s IPC in his master thesis [Reu05].

Kolanski and Klein worked closely with the L4 development team to obtain
a formalization of the kernel’s application programming interface (API) using
the B method [KK06]. Concurrency is modeled using B’s parallel composition,
hence it is not explicit in their abstract model.

One of the authors of this paper was involved in both the VFiasco and the
Robin projects [HT05, TVW09, Tew07]. In both projects the verification of
operating-system kernels was attempted, for VFiasco it was the Fiasco micro-
kernel, for Robin it was the Nova micro-hypervisor. At the time of the VFi-
asco project the Fiasco microkernel was fully preemptable. The Nova micro-
hypervisor consists of atomic code blocks with preemption points in between.
Both projects concentrated on the modelling and the semantics of certain as-
pects of the execution environment of these kernels. The verification of larger
portions of code was not attempted. Therefore no solution on how to deal with
parallelism has been developed in these two projects.

The l4.verified project [Kle09, EKE08, CKS08, Tuc09] attempts the verifi-
cation of the seL4 kernel. While l4.verified has good chances to finish the first
complete verification of a realistic operating-system kernel, we are not aware of
any published information about the interruptability of the seL4 kernel or the
treatment of parallelism in the verification.

Coyotos [SDSM04] is a secure, microkernel-based operating system built in a
new systems programming language (BitC) with a well-defined, mechanically-
specified semantics. Singularity [HLA+05] is a research operating system at Mi-
crosoft Research that aims to build a dependable operating system written in
a type-safe language like C# and specified in Sing#, a Spec# extension. These
projects are far more comprehensive and long term than our case study.

The Verisoft project [AHL+08, DDB08, HP08] aims at the complete verifica-
tion of a computer system from an e-mail client down to the gate level of the
processor. For the verification of their ATAPI disk driver the Verisoft project
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used a model in which processor steps are interleaved with the steps of the
ATAPI device. To simplify the reasoning the interleaved steps are reordered into
larger non-interleaved chunks as much as possible.

8 Conclusions

This work presented a lightweight approach to model concurrency which avoids
the need of setting up an interleaving semantics and allows one to reason in a non-
parallel fashion. This technique is best suited for systems where a component can
be affected by its environment at specific points and by well identified actions.

This approach was applied in the modelling of the IPC subsystem of Fiasco
microkernel. It enabled proving some properties of the model with reasonable
effort. Under the assumption that our high-level model is faithful and that the
identified list of actions is exhaustive, we can ensure that the code honours the
properties here studied. During this process we spotted a programming error
that, due to its concurrent nature, was hard to be found by testing techniques.

Acknowledgements. We would like to thank the operating-systems group at TU
Dresden for their support, in particular Rene Reussner and Michael Hohmuth
for answering many questions about IPC in Fiasco.
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