
Mi
rohypervisor Veri�
ation within the Robin Proje
t(featuring a Nizza ar
hite
ture demonstration)Hendrik TewsSoS group, Radboud University Nijmegenhttp://www.
s.ru.nl/∼tewsSupported by the European Union through PASR grant 104600.



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 2



Robin ProjectObje
tive: Create an open robust 
omputing platformEnjoy the latest bells and whistles of the internet.Without having to worry about the se
urity of online banking.4 Partners:
• Te
hni
al University Dresden (Germany)Development/Implementation of the open robust 
omputing infrastru
ture

• Radboud University NijmegenFormal methods: spe
i�
ation and veri�
ation of some parts
• Se
unet Se
urity Networks AG (Germany)Case study

• ST Mi
roele
troni
s (Fran
e)Port the platform to an embedded system (PDA)Sponsored by the EU through PASR
H. Tews: Robin Microhypervisor verification Slide 3



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. Fias
o/L4Linux/Nipi
ker DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 4



MotivationCon�i
t between Se
urity and Usebility

• mobile phone/PDA
– mobile webbrowser
– store personal data, used for monetary transa
tions

• PC at home
– Internetbanking, private 
orresponden
e
– Internet a

ess 
onsoleSe
urity 
onsiderations:

• 
losed system
• minimal softwareUsability 
onsiderations:
• supported OS with large appli
ation base (Windows, Linux)
• freely install/update software (from untrusted sour
es)For private use: Dis
onne
t from the internet or give up se
urity.

H. Tews: Robin Microhypervisor verification Slide 5



Nizza Architecture

hardware enforced
protection boundary

legacy
OS

legacy
OS
encapsulated

GUI
minimal secure secure

storage
. . .virtual machine

monitor

encrypt
decrypt

trusted
viewer

trusted
applications

loader

signature
generation

micro hypervisor

conventional hardware

trusted servers

user mode

kernel mode

trusted computing
base (TCB)

ad
dr

es
s 

sp
ac

e 
bo

un
da

ry

H. Tews: Robin Microhypervisor verification Slide 6



Properties

• Use several OS instan
es in parallel (web-browser instan
e, editor instan
e)

• Every OS instan
e has only limited a

ess and (typi
ally) 
annot a

ess otherOS instan
es
• reboot web-browser instan
e if 
ontaminated to badly

• editor instan
e 
an only talk to the en
ryption module

• Even if atta
ker 
ompromises installation media he 
annot do anything

• data typed in the editor OS is 
ompletely se
ured,
• trusted viewer prote
ts against trojan horses in the editor instan
e

• Even most of the hardware 
an be driven by en
apsulated laga
y OS instan
es

• denial of servi
e atta
ks are the only problem(but it requires an extraordinary atta
ker to deny servi
efor more than a few hours)

H. Tews: Robin Microhypervisor verification Slide 7



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 8



Comparison with XenSome history
1997 MkLinux: Linux on the the OSF Ma
h3 mi
rokernel, too slow

1997 L4Linux, paravirtualized Linux: The Performen
e on mi
ro-kernel-based Systemsonly 5% performan
e penalty
2003 XenoLinux: Xen and the Art of VirtualizationComparisonL4, L4Linux Xenonly Linux paravirtualisation, mi
ro-hypervisorproviding full virtualization underway full virtualizationstand-alone appli
ation and OS guests only OS guestsuse 
ase:many 
ooperating modules, RPC several, mainly independent guest OS'es;no RPCIPC laten
y heavily optimised IPC throughput optimiseddevi
e drivers are separated by address spa
eboundaries Domain 0 
ontrols all devi
essparse mi
ro-kernel interfa
e ri
h hypervisor interfa
elots of side 
hannels ?
H. Tews: Robin Microhypervisor verification Slide 9



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 10



Challenges of kernel VerificationC++
• OS kernels are typi
ally written in C or C++ enri
hed with assembly

• standard is very vague (are there negative numbers in signed int?)

• type system is not sound (even without type
asts)Spe
i�
s of kernel Veri�
ation
• need type 
asts (for memory management)
• has to deal with hardware registers that modify the behaviour of the CPU

– CR3 (page dire
tory base register
– EFLAGS
– global des
riptor table, interrupt des
riptor table
– task segment
– feature 
ontrol register CR0, CR4

• need for assembly (IRET, INVLPG, . . . )
• strange programming environment

– virtual memory, but the same pie
e of memory might be visible at di�erent addresses

– virtual memory mapping is manipulated by the kernel itself (even for kernel memory)

– strange side e�e
ts (memory mapped devi
es)
H. Tews: Robin Microhypervisor verification Slide 11



Why C++?

Why not write the kernel in a real language (say Haskell)and verify that?
• For some reason, kernels written not in C/C++ only have limited impa
t.

• Be
ause of memory allo
ation and hardware a

ess one always has to es
apeto assembly or C (for kernel programming).
• The runtime system for a safe language is bigger than a whole C++ mi
ro-hypervisor.

• C++ veri�
ation adds some additional resear
h 
hallenges.
H. Tews: Robin Microhypervisor verification Slide 12



Robin Verification Approach

• use an independent kernel(
urrently Nova)
• sour
e 
ode veri�
ation (of C++)
• develop denotational semanti
s for asubset of C++
• denotational semanti
s maps C++ intoHOL
• denotational semanti
s is based on ahardware model and a semanti
s of C++data types
• proof properties in the intera
tivetheorem prover PVS

hypervisor source code
(Semantics of the)

Hardware model
Semantics of
data types

hypervisor interface specification

Φdata_types , Φhardware ⊢ ϕ(hypervisor)

• denotational semanti
s relies on state transformers
State −→

ok :

State ⊎

pagefault :

State × Page_fault_info ⊎
hang :

1 ⊎
fatal :

1 ⊎ · · ·

• spe
i�
ation for the hypervisor interfa
e developed separately
• base spe
i�
ation in pseudo 
ode (simple set theory with lots of synta
ti
 sugar)

H. Tews: Robin Microhypervisor verification Slide 13



Data Flow in the verificationhardwaremodel data typeaxiomatizationC++ sour
eswith annotations Semanti
s 
ompiler logi
alannotations
semanti
sin HOL PVS

externalspe
i�
ation

• PVS: an intera
tive theorem prover for higher-order logi

• semanti
s 
ompiler translates C++ sour
es into PVS
• program semanti
s � is evaluated � on top of the hardware and the data type model

• veri�
ation goals are handwritten or in
luded in the sour
es as spe
ial annotations
H. Tews: Robin Microhypervisor verification Slide 14



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 15



Hardware Model

• stri
tly speaking the hardware model is an underspe
i�ed hardware spe
i�
ationsu
h that IA32 is a model of it
• provide basi
 operations for program semanti
s(reading/writing typed variables in virtual memory)

• physi
al memory, paging, virtual memory
• TLB
• memory mapped devi
es
• registers
• provides system state and base operations for sour
e-
ode semanti
s:

– writing in memory
– reading in memory (whi
h might 
hange the memory state: a

essed bits, page faults)

– spe
ial hardware operations: registers (CR3), bits in 
ontrol registers, . . .

• provides a hierar
hy of memory interfa
es: physi
al memory, virtual memory,VM with page fault handler
• relies on data type semanti
s for hardware data types (su
h as page dire
tory entries)

• stri
ter 
he
k for nonsense/errors than the real hardware(e.g., fail when a string is en
ountered in the page dire
tory)
H. Tews: Robin Microhypervisor verification Slide 16



Semantics of data types

• highly underspe
i�ed spe
i�
ation for ea
h data type

• three levels: uninterpreted data, interpreted data, pod

• 
onsisten
y proved with PVS theory re�nement

• interfa
e
size : nat,

valid? : [list[Byte], Address -> bool]

uidt : Uninterpreted_data_type,

to_byte : [Data, Address -> list[Byte]],

from_byte : [list[Byte], Address -> lift[Data]]

• leaves the obje
t representation of the data 
ompletely open
• the obje
t representation might 
ontain type tags (permitted by the C++ standard)

• only fun
tions for 
onversion to and from the obje
t representation
• 
onverting from the obje
t representation fails for invalid data
• result of interpreting a string as an integer 
annot be determined (not even that the 
on-version does not 
rash)
• permitted 
asts must be given as axioms or additional assumptions
• thereforeNormal termination proves dynami
 type 
orre
tness

H. Tews: Robin Microhypervisor verification Slide 17



Plain MemoryTask
• 
ommon abstra
tion of the various memory interfa
es for the majority of the 
ode

• deals with virtual memory aliasing(two di�erent virtual address regions are mapped to the same physi
al memory)

• provides short
ut lemmas for well-behaved variable a

essDe�nition, te
hni
ally
• invariant parameterised with a set of read-only and a set of read-write addresses withadditional properties
• a set of system states that is invariant under all memory read and writes within these setsof addresses
• memory a

esses within the address sets terminate normally (no page fault o

urs in�nitelyoften)

• only expe
ted 
hanges (no virtual memory aliasing)
• in summary Memory as one would expe
t

H. Tews: Robin Microhypervisor verification Slide 18



Contents

I. Introdu
tionII. Nizza se
urity ar
hite
tureIII. DemonstrationIV. Veri�
ation approa
h in the Robin proje
tV. Spotlights on detailsVI. Goals & Problems

H. Tews: Robin Microhypervisor verification Slide 19



Robin Verification GoalsGoals that we would like to attempt

• absen
e of the following hardware errors

– reserved bit violations
– a

essing features not present in the model (su
h as physi
al address extension)

– TLB in
onsisten
y
– unaligned a

ess to memory mapped hardware devi
es (su
h as the Advan
ed Pro-grammable Interrupt Controller)

• dynami
 type 
orre
tness
– absen
e of 
onventional type errors
– TLB errors (missing INVLPG)
– virtual memory aliasing
– allo
ation errors (two variables overlap)

• only kernel 
ode runs in kernel modeGoals 
urrently out of rea
h
• address spa
e separation

• atta
ker does not get a

ess to data in a di�erent address spa
e
H. Tews: Robin Microhypervisor verification Slide 20



Open Problems

Un
hanged Obje
t Code
• Goal: on every memory write produ
e a proof obligation:the kernel obje
t 
ode is not 
hanged
• work around: prove separately that kernel obje
t 
ode remains un
hanged

Conne
tion between the obje
t 
ode and the semanti
s of the sour
e 
ode

• assume 
orre
t 
ompiler(s) 
urrently
H. Tews: Robin Microhypervisor verification Slide 21



Conclusion

• Nizza ar
hite
ture solves 
on�i
t between se
urity and usability

• veri�
ation of the underlying mi
ro-hypervisor is ta
kled in the SoS group

• use denotational semanti
s of (a subset of) C++to prove simple 
orre
tness properties
H. Tews: Robin Microhypervisor verification Slide 22


